A report submitted in partial fulfilment of the
regulations governing the award of the Degree of BSc
(Honours) Computer Science at the University of
Northumbria at Newcastle

Project Report

Internet of Things (loT)

Wei Guang Heng

2016/2017

Software Engineering Project

Wei Guang Heng 14000122 1

Acknowledgement

Northumbria University for using their resources.
David Kendall for being my project supervisor.

Jungong Han for being my second marker.

Wei Guang Heng 14000122

DECLARATIONS
| declare the following:

(1) that the material contained in this dissertation is the end result of my own work and that
due acknowledgement has been given in the bibliography and references to ALL sources

be they printed, electronic or personal.
(2) the Word Count of this Dissertation is 8761

(3) that unless this dissertation has been confirmed as confidential, | agree to an entire
electronic copy or sections of the dissertation to being placed on the eLearning Portal
(Blackboard), if deemed appropriate, to allow future students the opportunity to see
examples of past dissertations. | understand that if displayed on eLearning Portal it would
be made available for no longer than five years and that students would be able to print off

copies or download.

(4) | agree to my dissertation being submitted to a plagiarism detection service, where it
will be stored in a database and compared against work submitted from this or any other

School or from other institutions using the service.

In the event of the service detecting a high degree of similarity between content within the
service this will be reported back to my supervisor and second marker, who may decide to
undertake further investigation that may ultimately lead to disciplinary actions, should

instances of plagiarism be detected.

(5) I have read the Northumbria University/Engineering and Environment Policy Statement
on Ethics in Research and Consultancy and | confirm that ethical issues have been

considered, evaluated and appropriately addressed in this research.

SIGNED:

Wei Guang Heng 14000122 3

Abstract

The project is to develop and implement an end to end solution using the mbed 10T platform
documenting the features and challenges face during the process.

A client application is developed to run on an ARM mbed enabled board and its features are to
push sensors values to the mbed device connector and to process any request that may be
coming from the it as well.

A web application consisting of a backend server and a front end client is also developed to pull
and send requests to the mbed device connector. The back end of the web application will act as a
middle man in between of the device connector and the front end client. It will be responsible for
pulling data that have been published to the device connector and pushing the new data over to
the front end client and at the same time listen for any requests that may be made from the front
end client. The front end client will mainly be displaying data that have been pushed from the back
end and sends as request made by the user to the back end.

The analysis chapter researched about the mbed loT platform which influenced how the synthesis
chapter will be structured and discuss about the process of the application development. And the

evaluation will access the development issues and challenges.

Overall this produce a project that has been researched, developed and tested to help other
developers to have a better understanding of the platform.

Wei Guang Heng 14000122 4

1. Introduction
1.1. Project aims
1.2. Project objectives
1.3. Project main features
1.4. Tools and techniques
2. Analysis

2.1. Literature Review

Table of contents

2.1.1. The rise of Internet of Things (loT)

2.1.2. Security concerns
2.1.3. Possible solutions
2.2. mbed loT Platform
2.3. Tools

2.3.1. mbed CLI

2.3.2. mbed Online compiler
2.3.3. Third Party IDEs
2.4. mbed OS

2.4.1. Task management
2.41.1. Threads

2.4.1.2. Event loop
2.4.2. Input and output
2.4.3. Digital interfaces
2.4.4. Communications

2.5. mbed client

2.6. mbed Device Connector

2.7. Requirements specifications

2.7.1. Functional requirements

2.7.2. Non functional requirements

2.8. Test plan
2.8.1. mbed client
2.8.2. Web application

Wei Guang Heng 14000122

© © ©O© O 0 00 0 o

N N S G G S G G G G g
© © ©O© © O O N N N N o A NdDdDDNDN B2 O O o

3. Synthesis

3.1. Freedom-K64F

3.2. ESP8266

3.2.1. Updating firmware to Espressif
3.3. Sparkfun weather shield

3.4. Software and libraries

3.5. Development

3.5.1. Setting up the hardware
3.5.2. Setting up the client project
3.5.3. Building the client application
3.5.3.1. Connecting to the internet
3.5.3.2. Flashing the program

3.5.3.3. Connecting to device connector

3.5.3.4. Making the sensors and LEDs accessible online

3.5.4. Building the web application

3.5.4.1. Getting the application access key
3.5.4.2. Setting up the NodedS application

3.5.4.3. Building the web server
3.5.4.4. Building the web client

4. Evaluation

4.1. Challenges and issues

4.1.1. Updating the ESP8266 firmware
4.1.2. Unreliable networking

4.2. Product evaluation

4.2.1. mbed Client application evaluation
4.2.2. Web application evaluation

4.3. Process evaluation

4.3.1. Project management

4.3.2. Learning curves

5. Conclusion and Recommendations
5.1. mbed Client

5.2. Web application

Wei Guang Heng 14000122

20
20
21
21
22
22
22
23
24
27
27
28
28
31
35
35
36
37
40
42
42
42
42
42
42
43
43
43
43
45
45
45

5.3. Literature review

6. Appendices
Appendix - Terms of references
Background to project
Proposed work
Aims
Objectives
Skills
Resources - hardware / software
Structure & contents of project report
Marking scheme
Appendix 1 - ESP8266 cheatsheet
Appendix 2 - Sparkfun weather shield schematics
Appendix 3 - mbed client main.cpp
Appendix 4 - Web server app.js
Appendix 5 - Web client index.hbs

7. References

8. Figures

Wei Guang Heng 14000122

45
46
46
46
48
48
48
49
49
50
50
55
56
57
60
63
67
69

1. Introduction

The project is to explore and implement features that are offered by the mbed 10T platform from the
hardware to software and cloud solutions. At the end of this project there should be a better

understanding on how the whole platforms integrate together.

1.1. Project aims

To build a device that runs on the mbed OS and able to communicate through the internet via
ARM clouds services from the web or mobile device.

1.2. Project objectives

» To investigate the use of features that are usually provided by a RTOS and how mbed OS
implements them.

 To build a backend service on the ARM cloud platform to remotely retrieve or control the sensors
and actuators.

* To build a web or mobile client that communicates with the ARM cloud services.

The report will include a literature review on the area of Internet of Things and look into the
different platforms that are available currently and how they provide a platform that developers can
be used to develop their ideas. The report will also include a requirement specifications in which
the project will achieve and define the scope of the project.

1.3. Project main features

The main features of this project is to have an end to end solution base on the mbed loT platform
and to document the features and the process of developing on the platform. As the popularity of
loT continue to rise, there are a few prototyping platforms available to developers. All this
development platforms aim to have a easy and lost cost way for business to develop their
hardware solutions without compromising the security threats that is currently being expose to
such devices at this point. At the end of this project there will be a web application that a user can
use to control the LEDs on the board and to read its sensor values over the internet.

1.4. Tools and techniques

The project will utilise the C programming language to build the client application, a widely use
programming language for embedded system. The back end of the web application will be built
using the NodedS framework and the front end will be built using the standard web technologies
HTML, CSS and javascript. Most of the work will mainly be done using the mbed online compiler
and a web text editor like Atom to write the web application.

Wei Guang Heng 14000122 8

2. Analysis

2.1. Literature Review

This literature review will discuss the concepts of Internet of Things, the applications and issues
with them and possible solutions that the industry is proposing.

2.1.1. The rise of Internet of Things (loT)

As the internet is becoming more widely available and more devices are equipped with Wi-Fi and
cellular radios, it is getting more than easy to get connected to the internet. This has created a new
category of devices as we know now as the Internet of Things (loT). The term Internet of Things
have been used differently but according to Morgan (2014) Internet of Things is a concept of
connecting any device with an on and off switch to the Internet. These devices can exists in any
form and there are many reasons fuelling the growth of such devices. Currently one of the most
important feature of 10T devices is data collection and it have been widely used to collect
informations on the weather, medical informations and animal tracking. Such information are useful
in predicting weather patterns, helping doctors make better diagnoses and studying on animals
migration patterns. 0T has also contribute to the growth of smart appliances at home. This ranges
from coffee machine, refrigerator, web cams and thermostats. This has allow home owners to
monitor the situation at home through their smart phones, from seeing who is at home to switching
off the light if the owner left it on when leaving home in a hurry.

Other than waiting for hardware manufactures to release products like an internet connected light
which can be controlled remotely, the Raspberry Pi, a low-cost general purpose computer made by
the Raspberry Pi Foundation has encouraged many people to start building their own kind of
devices that are able to interact with the physical world. The Raspberry Pi has created a new
community of developers and hobbyist alike and many of them have been working on their own
version of an internet connected home. To date The Raspberry Pi Foundation has sold 12.5
millions Raspberry Pi in five years and there does not seems to be a trend to slow down. (The
MagPi Magazine, 2017) and according to Forbes (2016) the number of 10T devices will continue to
grow to 30.7 billion in 2020.

2.1.2. Security concerns

However a recent attack in October 2016 cause some major websites like Twitter, Spotify and
Reddit to be taken offline. Security analysts believes that the attack was made by exploiting the
loopholes found in loT devices from web connected homes to launch the attack. (BBC News,
2016). One of the reason why such attack is possible is due to weak implementation of the
software running those devices and there is no mechanism to patch the exploit. This has also lead
to huge privacy concerns. A hacker will also be able to monitor or listen in to a house through an
insecure camera. In some cases the hacker will also be able to lock the owners of the house in and
demand ransom for release.

Wei Guang Heng 14000122 9

2.1.3. Possible solutions

As discussed in previous section, there can be serious consequences when security is taken lightly
when designing an internet connected device. However building and designing a secure device is
tedious and difficult. Canonical (2017) published a white paper detailing the current situation of the
issues and offers their solution. Canonical released an operating system call the Ubuntu Core and
they believe they are able provide a better and more secure operating system base on the
following eight concepts.

The OS is designed from the ground up for security.

The OS is kept simple while maintaining functionality.

The OS is able to update itself from a centralise mechanism.

The OS should be able to rollback to the last working state if an update fails.

Files should only be read only and can only be replaced with a digital authentication.
Applications should be self contained and sandboxed.

« The OS should feature familiar architecture and known coding methods.

« Security should not restrict the open and innovative nature of the OS.

Another big player offering an loT platform is Google with Android Things. It is currently in the
preview status but Google aims to provide a platform base on their existing products. Android
Things is build on top of Google’s mobile operating system and Google is committed to keep the
operating system up to date and fix any exploits that might be found in the future. Apart from
providing an loT OS for developers, Google has a suite of cloud base solution that allows the loT
device to connect to. Developers will be able to take advantage of Google’s cloud infrastructure
and scale their applications to demand.

One of the biggest reason that lead to having unsecured devices in the market currently is due to
the cost involved to implement the features needed to provide a secure operating system and the
infrastructure to maintain them. As discussed, Canonical and Google are providing some kind of
solutions to help developers reduce the cost. The next few chapters will discuss and detail the
features and process of developing an end to end solution on the ARM mbed IoT platform.

2.2. mbed loT Platform

The mbed loT Platform is a platform by ARM that provides an embedded operating system,
transport security and cloud services to help create connected embedded solutions. It’s aim is to
make transporting data from sensor to the server simple and secure.

According to ARM (2017) documentation the platform is made up of two key sets of products, the
device software and the cloud base device management system. Figure 1 shows the overall
architecture and the communication protocol implemented on the platform. The end to end solution
will be made up of three parts. The device software will consists of the mbed OS and the mbed
Client library. The mbed Client library helps to provision the ARM mbed enabled board to the mbed
connecter and makes the sensors or actuators resource available online. ARM does not provide
the infrastructure needed to host the web app, therefore it will be the responsibility of developer to
develop a web app and access the board resources through the mbed connector APIs.

Wei Guang Heng 14000122 10

mbed

mbed Client webApp
connector
1
ARM .
mbed CoAP HTTP/REST I
enabled °
L ~,
Jun
GET GET \
PUT PUT
POST POST
DELETE DELETE

Figure 1 - Overall architecture of the platform (ARM, 2017)

2.3. Tools

ARM provides two set of development tools that are available on their website. They provide a
command line tool and a online compiler. Both tools can be used to compile the codes and
generate the binary file which can be install on the mbed board. Whenever a mbed board is
connected, it will appear on the computer just like how a storage drive would appear. This allows
the binary to be easily loaded on to the board using the drag and drop method. Projects can also
be exported to supported Integrated Development Environment (IDEs) if the user prefers. This
section will briefly introduce the tools available.

2.3.1. mbed CLI

The mbed CLI is a python base tool specifically for mbed OS 5. It enables the full mbed workflow
which includes version control, maintaining and updating repositories. A toolchain for the mbed
board will be needed to be installed to compile projects and generate the binary which will be
loaded on to the board. The tool can also be used to export the program for debugging in
supported third party IDEs.

2.3.2. mbed Online compiler

The mbed online compiler available at https://developer.mbed.org/compiler is the easiest and
fastest tool to get your code up and running on your mbed board. Repositories can be managed
online and the program binary can be generated without installing any tools on your local
computer. Internet connection will be needed to be able to develop your program. Figure 2 shows
the interface of the mbed online complier. The panel on the left shows all the project that the
developer has in the account. The workspace is on the right and the bottom panel is where the
compiler messages, search results and notifications are shown. On the toolbar, the user will be
able to create a new project, import a sample project or library and work with version control.

Wei Guang Heng 14000122 11

https://developer.mbed.org/compiler

mbed /cm0645/main.cpp

Y INew v P Import Save Save Al |£] Compile v = ¢* Commit v () Revision #A & N | [LHelp FRDM-KG4F 4

Program Workspace | @ maincop

=& My Programs 1 #include "mbed.h" ~
= [F) amos4s
(53] easy-connect
(2] espB266-driver
(3] FX0S8700Q
() HTu21D
@ (2 simple-mbed-client
[¢) main.cpp
mbed_sppjson
] securityh
() mbed-os
[Z) ESP8266-Firmware-Update-To-E
[] mbed-os-example-blinky

12C 12¢(PTE25,
FX0887000Rccele: acc(i2e, FX0S8700CQ_SLAVE_ADDRI) ;
FX0S87000Magnetometer mag(i2c, FX0S8700CO_SLAVE ADDRL)

oid gr
void blueValueChanged (int alve) i

void updateAccXvalue ()
void updatenccyvalue();
void updatedcczvalue () ;

void updateMagxvalue () ;
void updateMagyvalue () ; v

Compile output for program: cm0645 Verbose | Emors:0 | Wamings:0 | Infos: 0

Description Error Number | Resource In Folder Location

< 5| | Compile Output | Find Results | Notifications v

Ready. In1 col 1 170 | INs | (| =

Figure 2 - mbed online compiler interface

2.3.3. Third Party IDEs

Both mbed CLI and mbed online compiler have the option to export the program for debugging in
third party IDEs. Using a third party IDE will allow more freedom in how a project is built and
optimised but ARM does not guarantee the same consistency as when using the mbed online
compiler.

2.4. mbed OS

mbed OS is the main operating system that will be used to develop the client program and it is
based on the open-source CMSIS-RTOS RTX. The operating system supports deterministic,
multithreaded real time software execution and supports a wide range of ARM Cortex-M based
devices. ARM mbed enable boards are designed to allow simple USB drag and drop programming
to allow rapid prototyping and ease of use. In terms of hardware and software security, mbed OS
uses a supervisory kernel uVisor thats creates an isolated security domains to restrict access to
memory and peripherals, this is important as the operating system should not allow the application
to have more access than it needs. Having unrestricted access may allow hackers to enter and
exploit the hardware features in it or developers may write certain codes which may cause
unintended effects. To ensure that the device communicates over the internet securely, its
communication APIs uses the SSL and TLS protocol. These protocols ensure that any information
that is sent will be encrypted and limit the possibility of a middle in man attack. The next few
section will discuss some of the Application Programming Interfaces (APIs) included and their
features.

Wei Guang Heng 14000122 12

2.4.1. Task management

Task management APls provided by mbed OS handles the creation and destructions of threads in
the system and provides a mechanism for a safe inter thread communication. This section will
discuss the different ways of managing them and the classes associated with them.

2.4.1.1. Threads

Athread is a set of instructions that the processor needs to execute in a program and is usually
managed by the scheduler of an operating system. Referring to ARM (2017) documentation, the
Thread class in mbed OS allows the defining, creating and controlling thread functions in the
program. A thread in the system can be running, ready, waiting and inactive. Figure 3 shows how a
thread can switch from one state to another. When a thread is in the running state, it is the thread
that is being process by the processor at that moment and will be the only thread to be in this state.
A ready thread with the highest priority will be the next running thread whenever the running thread
before it is terminated or switches to the waiting state. A waiting thread is a thread that is waiting
for an event or interrupt to occur before switching back to the ready state. Inactive thread are
threads that are not created or terminated, they typically does not consume any system resources.

terminate

Figure 3 - Threads and their states (ARM, 2017)

The function main is a special thread function that the system initialise and it will have an initial
priority of osPriorityNormal. This thread will be the first thread that the RTOS schedules. The code
shown in Figure 4 shows how two separated threads are created to blink two different LEDs. The
first thread will be created automatically and executes the main function and a second thread will
be created explicitly in the main function.

Wei Guang Heng 14000122 13

main.c Raw

#include "mbed.h"

DigitalOut led1(LED1);
DigitalOut led2(LED2);
Thread thread;

void led2_thread() {
while (true) {

led2 = !led2;
wait(1);
}
}

int main() {
thread.start(led2_thread);

while (true) {
ledl = !ledl;
wait(0.5);
}
}

Figure 4 - Blinking two LEDs on a separate thread example

2.4.1.2. Event loop

An event loop is a mechanism provided by mbed OS that allows us to defer the execution of code
to a different context. The reason of having such mechanism is because there are certain C
functions that runs in an interrupt context which is not safe. The event loop offers to make those
functions safer by deferring those codes from the interrupt context to the user context. In addition
the event loop can be used anywhere instead of just in an interrupt handler. Consider the following
code shown in figure 5. (ARM, 2017)

Wei Guang Heng 14000122 14

main.c Raw

#include "mbed.h"
#include "mbed_events.h"
DigitalOut led1(LED1);
InterruptIn sw(SW2);

EventQueue queue(32 * EVENTS_EVENT_SIZE);
Thread t;

void rise_handler(void) {
printf("rise_handler in context %p\r\n", Thread::gettid());

ledl = !ledl;
}

void fall_handler(void) {
printf("fall_handler in context %p\r\n", Thread::gettid());

ledl = !ledl;
}

int main() {

t.start(callback(&queue, &EventQueue::dispatch_forever));
printf(“Starting in context %p\r\n", Thread::gettid());

sw.rise(rise_handler);

sw.fall(queue.event(fall_handler));

Figure 5 - Thread example

As shown in figure 5, the rise_handler function will run in an interrupt context when the button is
push and the fall_handler will run in a user context when the button is released. However there is a
problem with this implementation. The printf in rise_handler is potentially unsafe when called on
the interrupt context. As mentioned in the previous paragraph, the event queue can be used in this
case to move the handler to run in the user context instead of the interrupt context.

ARM (2017) recommends the following changes to the code.

Replace:
sw.rise(rise_handler);

With:
sw.rise(queue.event(rise_handler));

The printf in rise_handler is now safe as its running in a user context. But this implementation
introduces another problem. The rise_handler function is now queued and no longer runs
immediately. In cases where the code has to execute immediately, we need another solution. The
solution documented by ARM (2017) is to split the rise_handler function into two parts, a time
critical portion which will run in the interrupt context and a non critical portion will run in the user
context. Figure 6 shows how the function can be divided into critical and non critical sections.

Wei Guang Heng 14000122 15

main.c Raw

void rise_handler_user_context(void) {

printf("rise_handler_user_context in context %p\r\n", Thread::gettid());

}
void rise_handler(void) {

ledl = !ledl;

queue.call(rise_handler_user_context);

¥

Figure 6 - Separating into critical and non critical parts

Codes that need to be executed immediately will now be in rise_handler function on the interrupt
context and those codes which are not critical and is unsafe to run on the interrupt context will now
be added into the rise_handler_user_context function. This design pattern of having a time critical
and non time critical portion can be easily implemented with event queue. Other than queuing non

interrupt safe code, any other codes can also be used with an event queue to queue and defer for
later execution.

2.4.2. Input and output

Being able to read information from sensors and responding through actuators are important in an
loT application. For example, a water pump should stop pumping water when a water level sensor
detects that the water tank is full. mbed OS provides a few APIs that is able to read or write analog
and digital signals. An analog signal can be a value that is coming off from a potentiometer, the
Analogln API can be used in this case to measure the voltage. The DigitalOut APl can be used to
switch on or off a LED just by sending a digital value of 1 or 0. Figure 7 demonstrate how we can
use a potentiometer to turn on or off an LED. (ARM, 2017)

main.c Raw

#include "mbed.h"

AnalogIn ain(A@);
DigitalOut dout(LED1);

int main(void) {
while (1) {

if(ain > 0.3f) {
dout = 1;

} else {
dout = 0;

}

wait(0.5);

Figure 7 - Turning on or off and LED base on potentiometer value

Wei Guang Heng 14000122 16

2.4.3. Digital interfaces

In a more complex system, a sensor may not just sends its value in a form of voltage like the
potentiometer. One of such example is having multiple sensors connected to a single module and
the module will transmit the data it receives in a single chunk of data using a particular protocol.
mbed OS supports four different protocols and they are serial, SPI, 12C and CAN. These protocols
allows a larger and more complex information to be send between different devices. The decision
as to which protocol to use will depend on the physical design of the communication hardware, if
the transfer type is synchronous or asynchronous and the number of peripherals needed to
support. Figure 8 shows the basic attribute of the serial protocol on Google (2017) Android Things
webpage. These serial protocol requires a minimum of two wires, one for transferring (TX) and one
for receiving (RX) data.

12C Synchronous 2 Up to 127 Low
SPI Synchronous 4+ Unlimited High
UART Asynchronous 2o0r4 1 Medium

Figure 8 - Basic attribute of different serial protocol (Google, 2017)

2.4.4. Communications

An internet connection will be needed to enable the board to be connected to the mbed Device
Connector. There are quite a few communication interfaces that mbed OS supports. The Ethernet
and Wi-Fi interfaces are the most commonly used. The nature of this project requires the flexibility
to collect data at any location and using the Wi-Fi interface would be the most appropriate. The
WiFilnterface API provides abstraction needed to connect to any Wi-Fi hotspot. The API can be
extended to supported different Wi-Fi module that are available. The use of this API will be further
discussed in the development section found in the synthesis.

2.5. mbed client

mbed client is a library included in mbed OS to connect devices to the embedded devices to the
Device Connector Service. A Linux version is also available for loT devices running on Linux
operating system. The library can be used to manage devices on the mbed Device Server,
communicate with internet services securely and controlling the endpoint and application logic. The
development section of the synthesis will discuss the implementation and uses of this library on
mbed OS.

2.6. mbed Device Connector

The mbed Device Connector is a cloud service provided by ARM available at https://
connector.mbed.com allows developers to connect their IoT devices without having to worry about
building any infrastructure. The service is built with security, simplicity and the ability to scale in
mind reducing the barrier to adoption. The service uses the Constrained Application Protocol

Wei Guang Heng 14000122 17

https://connector.mbed.com
https://connector.mbed.com

(CoAP). CoAP is a specialised industry standard mainly to be used in devices with constrained

nodes and networks. Figure 9 shows the architecture of the device connector and Figure 10 shows
the dashboard that the user have access to.

Figure 9 - Different components on mbed.com and the mbed device (ARM, 2017)

ARM»m bed Welcome, Wei Guang Heng Log out

mbed Device Connector (Beta)

Dashboard

My environment My devices Device Connector My applications
Dashboard

My devices T T
Connected devices

Security credentials

L Y

Device Connector

00of 100 0 of 10000 per hour 1of2
API Console
Connected devices Transactions Access keys
My applications
Access keys
‘jf‘ Learn how to develop ; Access REST API ; Learn how to develop
my device application documentation my web application

© ARM Ltd. Copyright 2016 - ARM mbed loT Device Platform

Home | Terms | Privacy | Cookies | Support

Figure 10 - Device cloud connector dashboard

Wei Guang Heng 14000122 18

http://mbed.com

2.7. Requirements specifications

With an overview of the whole mbed loT platform, there is a clearer idea to what can be achieved
and implemented and this section will show the functional and non functional requirement that the
project will try to achieve.

2.7.1. Functional requirements

1. Create an application uses the mbed OS APIs that runs on a mbed enabled board.

2. The mbed enabled board should has some input and output peripherals of which their values
can be uploaded or controlled remotely from the device connector.

3. Create a web app that is able to connect to the device connector and retrieve the mbed board
sensor informations or control any output peripherals available.

2.7.2. Non functional requirements

1. Client application should be responsive.
2. Web application should be simple and user friendly.

2.8. Test plan

The following list shows the plan to ensure that the product will be able to meet its aims and
objectives which will be evaluated at the final stage of the report.

2.8.1. mbed client

1. Must able to connect to the internet using the chosen network interface.

2. Must be able to authenticate itself to device connector and publish some data to it.

3. Arequest can be made on the device connector dashboard to get data from a particular sensor
or to control a LED that is on the board.

2.8.2. Web application

1. Must be able to connect to the device connector and to check for any devices that is
connected.

2. Must be able to retrieve data from the connected device.

Must be able to subscribe to changes on the connected device and display them.

4. Must be able to send a request to the connected device to control the LED.

w0

Wei Guang Heng 14000122 19

3. Synthesis

The synthesis will explain the hardware and software components involved and the process of
developing the end to end solution using the mbed IoT platform. The implementation is mostly
base on the example “Building an internet connected lighting system” provided on ARM (2017)
website.

3.1. Freedom-K64F

The Freedom-K64F is an ARM mbed enabled board developed by NXP in collaboration with mbed
for prototyping purposes. (ARM, 2017) The board comes with a 6-axis accelerometer and
magnetometer, 2 user push buttons and a RGD LED. In additional to the sensors, buttons and LED
the board also comes with an ethernet port and its functionality can be further expanded through
it’s header pins. The outer row pins are compatible with the Arduino R3 standard which is very
useful as there are many R3 shields available in the Arduino ecosystem. Figure 11 shows the
header configuration of the Freedom-K64F board.

ARM'
mbed

bled

FRDM-K64F (rev E4)
Arduino Headers

NC. e

ADC1 _SE18
N.C.

ADC1_DMO

Figure 11 - Freedom-K64F board header pin configurations (ARM, 2017)

Wei Guang Heng 14000122 20

3.2. ESP8266

The ESP8266 WiFi module is a self contained SOC with integrated TCP/IP protocol stack, it is
capable of hosting an application independently or to be used as a WiFi interface to an existing
micro controller (Sparkfun, 2017). More information on the module pins and commands examples
are available in the appendices. There are a number of firmwares available and the user is able to
flash a new firmware according to their needs. For the purpose of this project, the mbed team
(2016) recommends the Espressif firmware and they provide a easy to use tool to flash the
firmware onto the module.

3.2.1. Updating firmware to Espressif

A step by step video to update the firmware is available on ARM website. However the guide on
ARM’s website uses the Seeed Grove Serial WiFi module, a different variant of the ESP8266
module which has the peripherals to connect to the Grove Shield. The Grove shield is a Arduino
R3 shield which will then be stacked onto the Freedom-K64F board. The ESP8266 module that
was used in this project is the simpler module without the additional peripherals and therefore there
is a need to connect it to the Freedom-K64F board manually. According to the Espressif GitHub,
Angus Gratton (n.d.) the maintainer of the esptool documented that the GPIOO0 pin needs to be
grounded for the ESP8266 module to enter serial boot loader for its firmware to be updated. To
start flashing our ESP8266 module to the Espressif firmware we would have to wire up the module
to the Freedom board differently, Table 1 shows the connections that have to be made.

Table 1
Freedom-K64F ESP8266
3.3V 4 (Chip enable)
3.3V 8 (3.3V)
GND 1 (GND)
D1 (TX) 7 (RX)
DO (RX) 2 (TX)
GND 5 (GPIO0)

After the connection is made, flash the program provided by ARM to the Freedom-K64F board and
connect the it to a serial terminal. In the program, ensures that the pins for the TX and RX values
matches the pins that the module is connected to and the value of the switch that is to be used
matches the board button identifier. In this case the D1 is used as the TX pin and DO as the RX
pin. SW2 is the button that is used to trigger the update. Once the Freedom-K64F board boots up
the serial terminal will provide the instructions on screen to go through the update process. The
process involves pushing a physical button and waiting for the different files to be transferred on to
the module.

Wei Guang Heng 14000122 21

3.3. Sparkfun weather shield

Sparkfun weather shield is an Arduino shield base on the R3 standard and it utilise HTU21D,
MPL3115A2 and ALS-PT19 sensors to provide humidity, barometric pressure and light
informations. The values of HTU21D and MPL3115A2 sensors are available through the 12C
protocol and the ALS-PT19 value can be read by measuring the voltage that is coming out from its
output pin. The schematics of the shield is available in the appendices section.

3.4. Software and libraries

Developing the application from scratch is a very difficult and a tedious process and use of libraries
will provide the abstraction of not working directly on the hardware easier. Table 2 shows the
libraries that are used and their uses in the application.

Table 2
Libraries Functions
easy-connect Provides an easy way to connect to the internet
esp8266-driver Driver for the ESP8266 wifi module
FXOS8700Q Driver for the motion sensors on the Freedom-K64 board
HTU21D Driver for the sensors on the Sparkfun weather board
simple-mbed-client Provides an abstraction from managing device connector APIs directly
mbed-os The operating system itself for managing resources on the mbed board

3.5. Development

This section will explain the process of setting up the three hardware components together,
developing the client application and including steps on importing the libraries mentioned in the
software and libraries section. When the client application is tested and working, the next step is to
add in the codes needed to connect the board to the mbed device connector service. And lastly
when the data is accessible from the device connector dashboard, the final stage will be to develop
a web application that polls data from the device connector and display them in a browser.

Wei Guang Heng 14000122 22

3.5.1. Setting up the hardware

As previously discuss, the development board that will be used in this project is the Freedom-K64
with a Sparkfun shield and the ESP8266 wifi module. In addition a few female to male jumper wires
and male to male jumper wires are needed. Figure 12 shows the hardware components.

8 »
sparkfun
Weather Shield

Figure 12 - Components to be used in this project, from left FRDM-K64, Sparkfun weather shield,
ESP8266 Wifi module and jumper wires.

Connecting the Sparkfun weather shield to the development board is as easy as stacking it on top
to it, as the header pins are compatible to the Arduino R3 standard. However the following
connections have to be made from the ESP8266 module to the Sparkfun weather shield as shown
in table 3 using the jumper wires.

Table 3
Sparkfun weather shield ESP8266
3.3V 4 (Chip enable)
3.3V 8 (3.3V)
GND GND
TX 7 (RX)
RX 2 (TX)

Wei Guang Heng 14000122 23

»
sparkfun
Weather Shielc

Figure 13 - All components connected together

Figure 13 show how the board will look like with the different components connected. However as
shown in figure 13, there is an additional connection from pin 3 to pin 8 on the weather shield.
Referring to the schematics of the weather shield there is a need to provide a 3.3V to the light
sensor. As other 3.3V pins are connected to the wifi module, there is a need to find another pin to
provide that 3.3V. As the result pin D8 which can be set to high is used to provide that 3.3V for the
light sensor.

3.5.2. Setting up the client project

Now that the hardware is all wired up, it time to start building the application for the board.
However to access the mbed online compiler, an mbed account will be needed and can be created
on mbed developer website. Once the account is created, login into the mbed online compiler and
the next step is to setup the workspace for the application. To get started create a new project from
the top left hand corner. A new pop out should appear, in this case select FRDM-K64 as the
platform and empty program for the template and finally give the program a name.

Wei Guang Heng 14000122 24

Create new program X
tlienf] Create new program for "FRDM-K64F "

This will create a new C++ program for "FRDM-K64F " in your
workspace. You can always change the platform of this program =]

once created.

@ Please specify program name

Platform: | & FRDM-K64F

| =

|

Template: | 3 Empty Program

Program Name: hello_worldl

The name of the program to be created in your
workspace

’ OK ‘ ’ Cancel

D

Figure 14 - Creating a new project

The next step is to import the libraries mentioned in the software and libraries section using the
import button and click on the “Click here to import from URL” option shown in figure 15. Figure 16
shows the options available for importing the library. Enter all the url from table 4 and ensure that
the target path is the project that was created earlier. Ensure that the import as library option is
selected and update all sub-libraries is unchecked. Additional information about the library are also
available on the url provided. After importing the libraries create the following three files, main.cpp,

mbed_app.json and security.h in the program.

Import Wizard

-

Import a program from mbed.org

mbed am from the list. You can also drag&drop them in your workspace.
— import from URL.

Figure 15 - Import from URL option (ARM, 2017)

Wei Guang Heng 14000122

25

v .
Import Library

Import Library (\
Import a library from mbed.org into a program in your ‘*
workspace. mbed

@ Please specify name

Source URL: |httns://aithub.com/ARMmbed/mbed-os/ |

Import As: Program @ Library
Import Name: mbed-os| v
TargetPath: |[] cm0645 |~ |

New Program: |Opt|ona[|

Update: Update all sub-libraries to the latest revision

Import ‘ | Cancel l

Figure 16 - Import library dialog

Table 4
Libraries URL
easy-connect https://github.com/ARMmbed/easy-connect/
esp8266-driver http://developer.mbed.org/teams/ESP8266/code/esp8266-driver/
FX0S8700Q http://developer.mbed.org/teams/NXP/code/FXOS8700Q/
HTU21D http://developer.mbed.org/users/hwing91/code/HTU21D/
simple-mbed-client http://developer.mbed.org/teams/sandbox/code/simple-mbed-client/
mbed-os https://github.com/ARMmbed/mbed-os/

At this point the workspace should look like figure 17.

Program Workspace <

= My Programs

+ (2] easy-connect

+ [i2] esp8266-driver

+ (i3] FX0S8700Q

+ (i3] HTU21D

+ [2)] simple-mbed-client
[? main.cpp
E mbed_app.json
E security.h

+ ') mbed-os

Figure 17 - Project with libraries set up and the default files required.

Wei Guang Heng 14000122

26

https://github.com/ARMmbed/easy-connect/
http://developer.mbed.org/teams/ESP8266/code/esp8266-driver/
http://developer.mbed.org/teams/NXP/code/FXOS8700Q/
http://developer.mbed.org/users/hwing91/code/HTU21D/
http://developer.mbed.org/teams/sandbox/code/simple-mbed-client/
https://github.com/ARMmbed/mbed-os/

3.5.3. Building the client application

3.5.3.1. Connecting to the internet

With the project set up, its finally the time to add some application code. Lets start off by
connecting the board to a wifi hotspot with an internet connection. Firstly, declare the wifi
informations in the mbed_app.json file, this file is used to separate configuration and application
code. A template is provide on ARM (2017) documentation and is shown in Figure 18. The next
step is to add the codes shown in figure 19 to main.cpp to build a simple program that connects to
the wifi declared in the configuration file. The programs uses the easy_connect library to help
initialise the wifi module and connects to the internet.

mbed_app.json Raw

{
"config": {

"network-interface":{
"help": "options are ETHERNET,WIFI_ESP8266,MESH_LOWPAN_ND,MESH_THREAD",
"value": "WIFI_ESP8266"

h

"esp8266-tx": {
"help": "Pin used as TX (connects to ESP8266 RX)",
"value": "D1"

b

"esp8266-rx": {
"help": "Pin used as RX (connects to ESP8266 TX)",
"value": "DO"

h

"esp8266-ssid": {
"value": "\"Enter your Wifi SSID here\""

h

"esp8266-password": {
"value": "\"Enter you Wifi password here\""

h

"esp8266-debug": {
"value": false

}
+H
"target_overrides": {
"t {
“target.features_add": ["IPV4"]
}
}
}
Figure 18 - Declaring the wifi connection information
main.cpp Raw

#include "mbed.h"
#include "easy-connect.h"

Serial pc(USBTX, USBRX);
int main() {

NetworkInterface xnetwork = easy_connect(true);

if (!network) {
pc.printf("Unable to connect to the internet.\n");
return 1;

} else {
pc.printf("Successfully connected to the internet.\n");

}

Figure 19 - Simple program to connect to the internet
Wei Guang Heng 14000122 27

3.5.8.2. Flashing the program

Once the codes are added, click on the compile button on the top of the online compiler and the
binary of the program will be download on to the local computer. Plugged in the Freedom-K64
board in to a USB port on a computer and it should appear like a normal usb storage drive. Drag
the binary onto the storage and the new program will be flashed on to the board. When done, open
up a serial terminal and the status of the program should be shown depending on the status of the
network. It should prints the success message when the wifi module manages to connect to the
internet or an error message if something goes wrong. In a case where the wifi connection cannot
be made, the esp8266-debug value in the mbed_app.json can be set to true to allow a more
verbose debugging.

. -
. . _

o~ - — —
@‘\ Ad » Network » vmware-host » Shared Folders » Downloads » v[

Organize ~ Open ~ New folder

U Favorites
Ml Desktop connected-lights.bin
Downloads

=4 Recent Places

&# Shared Folders |) Move to MBED (E:) |BOXA1_K64F.bin

= IMG 20160714 211638.ipq

Figure 20 - Dragging the binary on to the board (ARM, 2017)

3.5.3.3. Connecting to device connector

Now that the board is able to connect to the internet, it time to connect the board to the device
connector and make the sensors on the board accessible. All the data that flows between the
board and the mbed device connector are encrypted and therefore before the board can be
connected to the device connector a security certificate needs to be added into the application. The
security certificate is available from the device connector webpage https://connector.mbed.com/
Login using the same mbed developer account that was created earlier and navigate to the My
Device > Security Credentials. Click on Get my security credentials and the content inside the grey
box shown in figure 21 will be needed to be copied into the security.h file that was created when
the project is being set up.

Wei Guang Heng 14000122 28

https://connector.mbed.com/

ARM mbed

mbed Device Connector (Beta)

Security}CredentiaIs

security h

§

Figure 21 - mbed Device Connector security credentials page with security certificate generated
(ARM, 2017)

With the security certificate in place its time to connect the board with the network connection that
was created earlier. To connect to the mbed device connector, the simple-mbed-client library will be
used. Figure 22 shows how the simple-mbed-client library can be used with the NetworkInterface
to initiate the client which will be used later to manage the sensors and LEDs on the board.

Wei Guang Heng 14000122 29

main.cpp Raw

#include "mbed.h"

#include "easy-connect.h"
#include "security.h"

#include "simple-mbed-client.h"

// Client for managing connections to device connector
SimpleMbedClient client;

// Serial interface
Serial pc(USBTX, USBRX);

int main() {
// Connecting to wifi network
NetworkInterface xnetwork = easy_connect(true);
if (!network) {
pc.printf("Unable to connect to the internet.\n");
return 1;
}

// Initialising mbed client and connecting to mbed device connector
struct MbedClientOptions options = client.get_default_options();
options.DeviceType = "mbed-program";
if (!client.setup(options, network)) {

pc.printf(“Unable to set up mbed client.\n");

return 1;

Figure 22 - Updated program with the simple-mbed-client initialised

At this point the program is now able to connect to the internet and register itself to the mbed
device connector. If all this goes well, the unique identifier that was generated earlier from the
security credentials will appear in the mbed device connector dashboard shown in figure 23.

ARMwm bed Welcome, Wei Guang Heng Log out

mbed Device Connector (Beta)

Connected Devices

My environment These are your devices or endpoints that have connected to your account with mbed Device Connector.
Dashboard
1 of 100 connected devices

I 1 My devices
Connected devices

Security credentials

. Device Connector Name 4 Type Status

API Console
d573a52a-f126-4525-acce-014b56c7f05a mbed-program ACTIVE
My applications

Access keys

Figure 23 - mbed Device Connector showing the connected device

Wei Guang Heng 14000122 30

3.5.8.4. Making the sensors and LEDs accessible online

At this point the board should be able to connect to the internet and register itself on the mbed
device connector. The last stage of the client development is to send the sensor values to the
device connector and to allow the LEDs to be turned on or off online. Just a recap, there are two
sensors on the Freedom-K64 board, the accelerometer and the magnetometer, three LEDs, red
blue and green. In addition, there are two LEDs and three sensors on the Sparkfun weather shield,
light, temperature and humidity. The LEDs on the weather shield will be used to indicate the status
of the board. With this in mind, consider all these sensors and LEDs as resources and thats how
they will be declared. The LEDs and sensors will be initialised normally shown in figure 24 and they
will be declared as resources to the device connector shown in figure 25.

main.cpp Raw

HTU21D weatherSensor(A4, A5);
AnalogIn lightSensor(Al);
DigitalOut blueStatusLED(D7);
DigitalOut greenStatusLED(D8);

Initialising LED
DigitalOut redLED(LED1, 1);
DigitalOut greenLED(LED2, 1);

DigitalOut bluelLED(LED3, 1);

I2C i2c(PTE25, PTE24);
FX0S8700QAccelerometer acc(i2c, FX0S870@0CQ_SLAVE_ADDR1);
FX0S8700QMagnetometer mag(i2c, FX0S8700CQ_SLAVE_ADDR1);

Figure 24 - Initialising the LEDs and sensors

main.cpp Raw

ur
SimpleResourceInt redValue = client.define_resource("led/@/red", 1, &redValueChanged);
SimpleResourceInt greenValue = client.define_resource("led/@/green", 1, &greenValueChanged);
SimpleResourceInt blueValue = client.define_resource("1led/@/blue”, 1, &blueValueChanged);
SimpleResourceInt accXValue = client.define_resource("acc/0/x", @, M2MBase::GET_ALLOWED);
client.define_resource("acc/@/y", 0, M2MBase::GET_ALLOWED);
client.define_resource("acc/0/z", 0, M2MBase::GET_ALLOWED);

SimpleResourceInt accYValue

SimpleResourceInt accZValue

SimpleResourceInt magXValue
SimpleResourceInt magYValue

client.define_resource('mag/@/x", @, M2MBase::GET_ALLOWED);
client.define_resource("mag/@/y", @, M2MBase::GET_ALLOWED);
client.define_resource("mag/0/z", @, M2MBase::GET_ALLOWED);

SimpleResourceInt magZValue

SimpleResourceInt lightValue = client.define_resource("weather/@/light", @, M2MBase::GET_ALLOWED);
SimpleResourceInt humidityValue = client.define_resource("weather/0/humidity", @, M2MBase::GET_ALLOWED);
SimpleResourceInt temperatureValue = client.define_resource("weather/0/temperature”, @, M2MBase::GET_ALLOWED);

Figure 25 - Declaring resources that will be available on device connector

As shown in figure 24, the LEDs are initialised using the mbed DigitalOut API. This will allow the
LED to be turned on or off just by assigning a 0 or 1. The other sensors are then initialised with
their respective libraries with the exception of the light sensor as it only provide its values as a
voltage, therefore the Analogln APl is used.

In figure 25, each resources are declared as a simple integer. Notice that the client that was
previously declared is now used to define the resource that should show up in the device
Wei Guang Heng 14000122 31

connector dashboard which the board successfully connects itself. The first parameter of the
define_resource function takes in a string that is formatted as the mbed Device Connector data
model. The mbed Device Connector data model follows the following format.

ObjectiD/Objectinstance/Resourceld

The ObjectlD is used to group things that are similar to each other. For example the first three
resources related to the LEDs and therefore has the ObjectID of led and subsequently acc for
accelerometer, mag for magnetometer and weather for the sensors on the weather shield.

In the current case there is only one instance of each individual items and therefore all
Objectinstance are declared as 0.

And finally the ResourcelD is used to uniquely identify the individual resource on an object. For
example there are three different colours of LED so therefore they are declared as red, green and
blue but they are all under the same ObjectID.

The second parameter of the function is to define the default value of that resource. For the LEDs
the default values are 1 which will ensure the LEDs will be off by default and the other resource will
start with a default value of 0. The last parameter for the LED is an address of the function that will
be called when the value of that resources is changed online. So for example, from the device
connector the value of the LED resource can be changed from 1 to 0, when this happens the
function redValueChanged will be called and depending on the new value that is sent from the
device connector the LED can be turned on or off.

Now that the sensors and LEDs are initialised and declared as resources the final step is to upload
the sensor values to the device connector which can be easily achieved just by updating the
SimpleResourcelnt value. Figure 26 shows an updated main function with the code to connect the
device connector and upload the sensor readings to device connector.

Wei Guang Heng 14000122 32

main.cpp Raw

int main() {
C 2cting to wifi network
NetworkInterface xnetwork = easy_connect(true);
if (!network) {
pc.printf("Unable to connect to the internet.\n");
return 1;

Initialising mbed client and connecting to mbed device connecto
struct MbedClientOptions options = client.get_default_options();
options.DeviceType = "mbed-program";
if (!client.setup(options, network)) {
pc.printf("Unable to set up mbed client.\n");
return 1;
}
while (1) {
/ Assigning the weather shield data to the weather resol
lightValue = lightSensor.read_ul6();
humidityValue = weatherSensor.sample_humid();
temperatureValue = weatherSensor.sample_ctemp();

ASsS1gning the accelerometer data To the acc esource

intl6_t raX, raY, raZ;

acc.getX(raX);

accXValue = raX;

acc.gety(raY);

accYValue = raY;

acc.getZ(raz);

accZValue = raz;

ning nagnetometer data to tt
intl6_t rmX, rmY, rmZ;

mag.getX(rmX) ;

magXValue = rmX;

mag.getY(rmy);

magYValue = rmY;

mag.getz(rmZ);

magZValue = rmZ;

Figure 26 - Uploading sensor values to the device connector

The sensor values are now uploaded to the device connector and can be accessed through the
mbed device connector dashboard as shown in figure 27. Figure 28 shows the response of the API

when a GET request is made on the temperature resource. The Base64 encoded payload
indicates the current temperature around the board at the point of request is 23 degrees celcius.

Wei Guang Heng 14000122 33

/endpoints/{endpoint-name}/{resource-path} Endpoint's resource representation

Request

Parameters | Content-types and headers | Executed request

Data
Parameter Value Description
type
endpoint d573a52a-f126-45 Endpoint name uid
]
resource-
v Select resource esource-path string
path 3
13/0
lacc
facclo tional. Default: fal
ional. Default: false
cacheOnly /acc/0/x P) boolean
JacclOly rue, the response will come only from cache.
/acc/0/z
Nled
/led/0 ptional. Default: false
/led/0/blue rue, not waiting for response and no response is
noResp /led/O/green «pected. Creates CoAP Non-Confirmable requests. boolean
/led/0/red alse, response is expected and CoAP request is
/mag »nfirmable.
/mag/0
/mag/0/x
/ /0.
Note abou{ mag/0ly
/mag/0/z
The endpoill sveather ition channel. Notifications are delivered as PUT messages to the
HTTP server Jweather/0 iription server message. An HTTP request returns immediately
with an asyn /weather/0/humidity th the response.
/weather/0/light
/weather/O/temperature

Figure 27 - mbed Device Connector dashboard showing the resources available

Response

Response body

Response headers | Response codes 202 : Accepted

"async-response-id": "57856506#d573a52a-£f126-4525-acce-014b56c7£f05akal
}

Waiting for asynchronous response...
Asynchronous response received in the notification channel ...

{
"id": "57856506#d573a52a-£f126-4525-acce-014b56c7f05a@afb739d4-50d2-4d:
"status": 200,
"payload": "MjM=",
"ct": "text/plain",
"max-age": 0
}

Base64 decoded payload: 23

Figure 28 - Response from the REST API on the temperature resource

Wei Guang Heng 14000122 34

At this point, the board is publishing its sensor values to the device connector and the user is able
to retrieve and manipulate the resources values. However while testing the program with the
dashboard, the APl seems to be unresponsive or slow. Upon reviewing the code, there is an issue
with the way the resource value is updated. To update the values to the device connector, time is
needed to collect the data from the sensor and to transmit them over the internet. The issue with
the codes in figure 26 is that all this retrieving of values and updating are done on the same thread
which has resulted in blocking and unexpected behaviour. As previously discussed, mbed OS
provides an APl EventQueue which helps to execute different functions in a different context. The
simple-mbed-client library comes with an EventQueue object which can help to queue the updating
value tasks in to different context to ensure the function are being executed efficiently. To do that, a
function is created for every resources that needs to be updated and the codes that were initially in
the main function in broken up in to individual function and will be passed in to the client event
queue object as shown in figure 29 with the function being executed every one second.

main.cpp Raw

client.eventQueue()->call_every(1000, &updateAccXValue);
client.eventQueue()->call_every(1000, &updateAccYValue);
client.eventQueue()->call_every (1000, &updateAccZValue);
client.eventQueue()->call_every(1000, &updateMagXValue);
client.eventQueue()->call_every(1000, &updateMagYValue);
client.eventQueue()->call_every(1000, &updateMagZValue);
client.eventQueue()->call_every(1000, &updateLightValue);
client.eventQueue()->call_every(1000, &updateHumidityValue);
client.eventQueue()->call_every(1000, &updateTemperatureValue);

Figure 29 - Using the mbed client event queue to update the resources values

Now the program should be more responsive when requesting the value from the dashboard as all
calls to the network is now queued and executed in a different context. A copy of the main.cpp file
is available in the appendixes which will show the whole program.

3.5.4. Building the web application

Now that the board is publishing its resources and are accessible online, the final product of the
solution is the web application. The web application will communicate with the device connector
through the RESTful APIs and will extend the functionality of the dashboard, for example with the
data from the device connector a graph can be plot to show how the values of the sensors
changes over time. This section will explain the use of the mbed connector node API and build a
NodedJS application to display the data from the board in a more intuitive way.

3.5.4.1. Getting the application access key

As usual, before any application can talk to the device connector a key is required this is to ensure
that access to the mbed client board is restricted to the user’s account. The access key can be
easily generated from the device connector dashboard access keys section shown in figure 30.

Wei Guang Heng 14000122 35

My environment These are your applications access keys. These access keys let your application connect to mbed Device Connector
REST API (URL: https://api.connector.mbed.com).

My devices 1 of 2 access keys

Device Connector

My applications Descriptive name of access key:
Access Key Name

CANCEL

Figure 30 - Generating application access key

3.5.4.2. Setting up the NodeJS application

The NodedS application that will be developed is base on the express web framework and will be
using the mbed connector api node library to help manage the connections to the device
connector. Before creating a new NodedJS project ensure that NodedJS is installed on the
development computer. Additional libraries will be added to add more features like sockets for
sending message between the back end server and front end client, handlebar templating engine
for rendering html files and smoothie for plotting graphs. Once NodedS is installed create a
directory with the following structure shown in figure 31.

v @ web-app
v @ public
> BB css
> js
v BB views

B index.hbs

B app.js

[E) package.json
Figure 31 - Web application project structure

The css and js folder will contain the front end library files. This project uses the Skeleton
boilerplate for easy creating a responsive site and Smoothie Charts for plotting the graph.

Download the libraries from http://getskeleton.com and http://smoothiecharts.org respectively and
add those files into this folder.

Inside the views folder there is a index.hbs file. This will be the template file that the server will
render to the client when the user visit the front page. The file will contain all the html code and
some javascript to layout all the different elements on the page. The app.js file will contain all the
server side logic including the mbed connector api and the package.json file will describe the
dependencies and provide some information about the application. Figure 32 shows all the
dependencies that are needed on the server side.

Wei Guang Heng 14000122 36

http://getskeleton.com
http://smoothiecharts.org

package.json

: "cm@645-web-app",

: "1.0.0",

on": "Internet of Things",
: "app.js",
ts": {

: "node app.js"

or': "Wei Guang Heng",

o'y "ISC",
cies": {
s'': "~4.14.0",
handlebars": "~4.0.6",
hbs": "~4.0.1",
connecto : "73.0.0",
t.io": "~1.7.2"

Figure 32 - package.json

3.5.4.3. Building the web server

With the dependencies declared in the package.json file run the command npm install from the
project directory in the bash terminal and the package manager will download the files in to a new
folder node_modules. After the libraries are installed declare all the modules that will be used in the
app.js shown in figure 33.

app.js

var MbedConnectorApi = require('mbed-connector-api');
var express = require('express');

var path = require('path');
var ioLib = require('socket.io');
var http = require('http');

Figure 33 - Importing modules

Wei Guang Heng 14000122 37

Next declare the access keys and the endpoints of the mbed client resources.

frdmK64Endpoint = 'Put your device endpoint here';

ledRedResourceURI = '/led/0/red';
ledGreenResourceURI = '/led/0/green';
ledBlueResourceURI = '/led/0/blue';

accXResourceURI '/acc/0/x"';
accYResourceURI '/acc/0/y';
accZResourceURI '/acc/0/z';

magXResourceURI '/mag/0/x";
magYResourceURI '/mag/0/y';
magZResourceURI ‘/mag/0/z"';

temperatureResourceURI = '/weather/0/temperature’;
humidityResourceURI = '/weather/0/humidity’;
lightResourceURI = '/weather/0/1light';

Figure 34 - Declaring access key and resource url

For the last part of building the server app, an instance of the express server object will be created.
The express server will be responsible of serving the front page, manage the sockets between
itself and the clients and connecting to the mbed connector to poll for new data. For the polling to
work, the server will have to subscribe to the resource that it is interested in. In this case all the
resources declared earlier will be subscribed. Once subscribed the notification call back function
will be called every time the server received a new value on the resource. Sockets are used to
allow the web client to communicate to the server and vice versa. When the notification callback is
triggered or when the user toggles the switch on the front page, a message will be send via the
sockets to either update the values on the webpage or to make a request to toggle the LEDs one
the board. The message that were send will be in a key value dictionary form. The next few figures
shows the remaining part of the server codes that sets up the server, creates the sockets, resource
subscriptions and notification callbacks.

Wei Guang Heng 14000122 38

var mbedConnectorApi = new MbedConnectorApi({
accessKey: accessKey

1)

var app = express();

.set('views', path.join(__dirname, 'views'));
p.set('view engine', 'hbs');

pp.use(express.static(path.join(__d ame, 'public')));

p.set('port', port);

pp.get('/', function(request, response) {

var server = http.Server(app);
var io = ioLib(server);

io.on('connection', function (socket) {

cket.on('toggle-switch', function(data) {
console. log('Toogle switch: ', data);
nbe ec Api.putResourceValue(frdmK64Endpoint, data.id ata.value, function(error) {
if (error) console.error(error);
1);
});
Y);

Figure 35 - Setting up the web server

edConne Api.on('notification', function(notification) {

var path = notifica
var payload =

io.emit('notifications', {
id: path,
value: payload
});
I))E

Figure 36 - Notification callback

Wei Guang Heng 14000122

rver. listen(port, function() {
Api.startLongPolling(function(error) {
if (error) console.error(error)
.getEndpoints(function(error, devices) {

if (error) throw error;

console.log('Found', devices.length, 'devices', devices);

s.forEach(function(device) {

e .putResourceSubscription(frdmK64Endpoint, accXResourceURI, function(error) {
if (error) console.error(error);

B

e e .putResourceSubscription(frdmK64Endpoint, accYResourceURI, function(error) {
if (error) console.error(error);
W

e ectorApi.putResourceSubscription(frdmK64Endpoint, accZResourceURI, function(error) {
if (error) console.error(error);
1);
});
}, { parameters: { type: 'mbed-program' } })

console. log('App is now listening on port %s', port);
1
};

Figure 37 - Start server and subscribing to notifications

3.5.4.4. Building the web client

The front page of the web application (Figure 38) should be displayed when the user visits the root
url of the server, example http://localhost:8080 when the server is being access from the
development machine. All the user interface logic are in the index.hbs file in the views folder. The
css and js files will be loaded from the public folder. In the javascript section of the codes shown in
figure 39 is where the sockets are initialised and handles the communication between itself and the
server. The html portion will display the switches for the LED, values of the weather sensors and
plot a graph for the motion sensors.

Wei Guang Heng 14000122 40

http://localhost:8080

< m localhost ¢ ju}

CMO0B45 Internet of Things

CMO0645 Internet of Things

LED Red «©
LED Green

LED Blue

Light sensor 3.32%
Humidity sensor 36%

Temperature sensor -

Accelerometer

Magnetometer

[LA~ L]

Figure 38 - Front page of the front end client

index.hbs
t typ ext/javascript" s/jquery-2.1.4.min.js"></sc
type="text/javascript" https://cdnjs.cloudflare.com/ajax/libs/socket.io/1.7.3/socket.
type="text/javascript" src="js/smoothie.js"></script>
typ ext/javascript">
$(function() {
var socket = io();

m getElementById(' red-toggle-switch').onclick = function() {
var value = 1;

value =
}
emit('toggle-switch', {
/led/0/red',
value: value

b;

accelerometersmoothie = new SmoothieChart();
e.streamTo(document.getElementById("accelerometercanvas"));

accXLine = new TimeSeries();
accYLine = new TimeSeries();
accZLine = new TimeSeries();

e.addTimeSeries(accXLine, { strokeStyle:'rgb(255, @, 0)', fillStyle:'rgba(255, @, @, 0.0)', lineWidth:3 });
hie.addTimeSeries(accYLine, { strokeStyle:'rgb(@, 255, @)', fillStyle:'rgba(@, 255, 0, 0.0)', lineWidth:3 });
hie.addTimeSeries(accZLine, { strokeStyle:'rgb(@, @, 255)', fillStyle:'rgba(@, @, 255, 0.0)', lineWidth:3 });

socket.on('notifications', function (data) {
console. log('Receieved data: ', data);
if (d "/acc/0/x") {
ac ine.append(new Date().getTime(), ¢
} else if (d ¢ "/acc/0/y") {
accYLine.append(new Date().getTime(), da
} else if (data. '/acc/0/z") {
accZLine.append(new Date().getTime(), d
3
b;
s

Figure 39 - Handling communications between server and client

Wei Guang Heng 14000122

41

4. Evaluation

This chapter will be divided into three different sections. The first section will discuss about the
challenges and issues, the second section will evaluate the product and lastly the last section will
discuss on the project process.

4.1. Challenges and issues

This section discuss about the challenges and issues mainly faced on the development side of the
project and how each of these challenges and issues are being approached.

4.1.1. Updating the ESP8266 firmware

Updating the ESP8266 wifi module prove to be tricky initially as there are many different variants of
it and are configured differently. There were also different tools available that can be used to
update its firmware but they were confusing and difficult to use as its not easy to get a feedback to
ensure the firmware is flashed correctly. Fortunately, Gratton maintainer of the esptool.py
published the details of the ESP8266 that was use in this project and detailed the connection
needed to set it to the flash firmware mode. The tool that was provide on the GitHub repository
does not work after a few attempts and eventually the firmware was updated using the tool that
mbed provides.

4.1.2. Unreliable networking

Even though the mbed board manages to connected to a wifi hotspot with the wifi module, it seems
to have difficulties keeping itself connected over a long period of time. It was difficult to find the root
cause of the issue as the driver does not really provide a way to show the signal strength of the
hotspot that the wifi module is connected to. Eventually the last attempt hoping that the wifi module
stay connected is to place it as close to the hotspot as possible but it still did not manage to keep
itself connected.

4.2. Product evaluation

This product evaluation section will evaluate the product against the requirements specification and
test plan initially set and discuss on the amount of success that was achieve for each one of them.

4.2.1. mbed Client application evaluation

As stated out in the requirements specification the client application is written and designed to run
on ARM mbed enabled boards and uses APIs provided by mbed OS. The client is able to connect
and publish information to the device connector and at the same time receives and execute
request from the device connector. As previously discussed in the synthesis chapter of uploading
sensor data to the device connector on the responsiveness of the API, steps were taken to ensure
that the data could be uploaded and retrieved as quickly as possible using the EventQueue.
However as there were nine sensors and three LEDs there is a noticeable delay between the

Wei Guang Heng 14000122 42

request received to turn on the LED to having the LED actually turning on. It is understood that the
EventQueue will execute functions one by one and thats highly the reason why there is such delay.

4.2.2. Web application evaluation

The web application has also fulfilled the requirements of being able to present the data coming
from the device connector and pushing request like switching on or off the LEDs. However, the
web application is currently built to poll the device connector for new data, and that is not really an
efficient way of handling new informations. Ideally ARM recommends to use its interrupt handler
API which will only triggers the notification callback when there is new data from the connected
devices. This approach is not feasible as it requires a public facing ip address that the device
connector can connect to deliver the data. In the current scope of this project, the web application
is running on a machine behind a firewall and does not have a public facing address.

4.3. Process evaluation

The project process consist of reviewing similar platforms and literature, sourcing for hardware
components, producing requirements and test plans, developing and testing the product and
writing the report. This section will focus on the project process, project management and personal
learning curves.

4.3.1. Project management

The initial stage of coming out with the requirements prove to be tricky as there were quite a few
uncertainties on what the platform is able to provide and the type of product that can be developed.
Much effort have been put in to decide on the selection of the development board that is to be
used. An ideal board for this project is to be able to have features that allows it to have enough
sensors data to upload to the device connector and some LEDs to demonstrate that the board can
be controlled remotely. The project plan did not consider the shipping time that may be needed for
the development boards to be delivered and troubleshooting any possible hardware issues.

The literature review has only briefly discussed about the security and similar platforms. This
projects requires more topics on the communication protocols and their design to be use in a
network constraint environment. In additional there is no discussion on how such platforms actually
helps developers to bring their prototype products to production devices.

4.3.2. Learning curves

This project requires various programming skills, knowledge about real time operating system and
digital serial protocols in order to develop the product. During the development stage the following
skills and knowledge have been gained or improved.

- C++
The client application is fully developed in C++ language and it has enhance the understanding
of pointers, classes and structs.

Wei Guang Heng 14000122 43

- NodedS
The web application is developed using the NodeJS framework based on javascript. There was
no prior experience with this framework and through the development of this application, there
was knowledge gained on managing dependencies using a package manager and some basic
web hosting concepts.

- Operating system concepts
During the analysis and development of the client application, more characteristic of an
operating system have been introduced. Use of threads, queues and interrupt handlers are
crucial to the performance of the application.

- Digital serial protocols

Communication protocols like serial, I2C and SPI was introduced when sourcing for a sensor
board. Previous knowledge in this area was initially limited to ethernet and CAN networks.

Wei Guang Heng 14000122 44

5. Conclusion and Recommendations

Even though the aims and objectives are met for this project, as discussed in the evaluation there
are areas in the the application can be improved. The following are some recommendation that can
be look into to improved the application and the literature review.

5.1. mbed Client

- mbed OS supports a range of network interfaces. Other connection method like mesh network or
ethernet also be used.

- Look in to alternative ways to manage the resources on the mbed board to improve
responsiveness.

+ Explore the mbed OS files API as the Freedom-K64 comes with a SD card slot.

5.2. Web application

- Deploy the web application to a web hosting site with a public facing ip address so that it would
be possible to use the interrupt handler method instead of the polling method.

- Connect to a database to store information coming from the board.

« As the connection between the user and the front end client is not encrypted consider adding
SSL feature to the web application to only handle requests through SSL for more enhance
security.

5.3. Literature review

- A more in depth discuss on the communication protocols or concepts like CoAP and M2M
communications.

Wei Guang Heng 14000122 45

6. Appendices

Appendix - Terms of references

Background to project

As the world gets more connected to each other via the internet, gone are the days when
an internet connected device is a desktop computer. People now are able to get online
easily through their mobile phones. Mobile phones has changed the way we work and
communicate. We are now able to respond to emails and get informations anywhere we
are with an internet connection. Messaging services like WhatsApp and Telegram allows
us to be able to message friends across the globe without worrying about the expensive
text message fees. Video call services like Skype, Apple FaceTime and Google Hangouts
has also enabled people to chat and see each other even though they are miles away from
each other. This are just some of the examples of what the internet can do for us.

As technology advances, a new category of devices starts to emerge. These devices are
what we know now as the Internet of Things (loT). They are devices that able to receive or
transmit information over the internet. One of such device can be a camera where a user
will be able to remotely retrieve the image taken by it. Another such device can be a
sensor device that measures temperature and humidity which uploads the measurements
to a server where users can remotely monitor the environment that the device is in.

In the consumer market, one of the more common application of 10T is home automation.
A home owner now is able to install these “smart devices” which they can control through
an app on their Android or iOS devices. Some of these devices are able to connect to the
internet and therefore allow the user to be able to control the devices even when they are
not at home.

As the interest within the consumer market on home automation grew, companies like
Amazon, Google and Apple are pushing out hardware and software that help to connect all
these devices through a centralised app or product.

Amazon currently offers a consumer product call the Amazon Echo. It is a voice command
device that allows the user to use their voice to issue commands to control those home
devices. It also has a virtual assistant called Alexa which can help the user gets the
weather forecast of just searching wikipedia for information.

Google has also announced a new product called Google Home. It is similar to Amazon
Echo which also allows the user to control their home devices with their voice and comes
with Google Assistant built into the device. Google Assistant is Google’s virtual assistant

Wei Guang Heng 14000122 46

that can help a person to manage their daily schedule and help user to search for
information.

Apple has not announce any products similar to the Amazon Echo or Google Home but
they have released a protocol known as HomeKit accessory protocol (HAP) for hardware
markers to conform to when developing a smart device for the Apple ecosystem. These
smart devices that conform to the protocol will be able to integrate with the Home app that
Apple has introduce in iOS 10. Once the user has go through the initial setup of adding the
devices into the app, the user will then be able to also control the home device and create
schedules to automate their house scenes. Apple has also started partnering home
builders to boast the rate of adoption for the platform.

Internet of Things are definitely gaining interest and popularity, developers and hobbyist
are now getting into developing their own version of smart devices with single-board
computers like the Raspberry Pi. The development community for these devices is
growing and people are getting creative about the kinds of devices they can come out with.

Wei Guang Heng 14000122 47

Proposed work

ARM currently offers an integrated platform mbed which consists of a RTOS and cloud
services that allows a developer to build a device and connecting it to a backend service
which can be accessed remotely.

During the course of the project | will be investigating on the features that is provided by
the mbed OS and implementing them through some sensors and actuators. After which |
will be investigating on the features that ARM provides on their cloud services. Throughout
this process | will be documenting on my findings and experience of developing on the
platform that they provide.

Aims

* To build a device that runs on the mbed OS and able to communicate through the
internet via ARM clouds services from the web or mobile device.

Objectives

» To investigate the use of features that are usually provided by a RTOS and how mbed
OS implements them.

» To build a backend service on the ARM cloud platform to remotely retrieve or control the
sensors and actuators.

» To build a web or mobile client that communicates with the ARM cloud services.

Wei Guang Heng 14000122 48

Skills

Writing a program in C

Writing REST APIs on mbed platform
Building a web client

Building an iOS app

Building an Android app

Resources - hardware / software

Software
* |DE Keil MDK

From modules operating systems and embedded
systems.

Documentations provided at www.mbed.com
From module web technology.

To be learn via online tutorial at
www.raywenderlich.com

From module mobile application development.

- |IDE for developing the micro controller board.

* Android studio

- IDE for developing Android apps.
» Xcode

- IDE for developing iOS apps

Hardware

« FRDM-K64F

* An Android device
* AniOS device

* All hardware will be provided by student.

Wei Guang Heng 14000122

49

http://www.mbed.com
http://www.raywenderlich.com

Structure & contents of project report

I. Abstract
II. Introduction
lll. Analysis
IV. Synthesis
V. Evaluation
VI. Conclusion and Recommendations
VII.Appendices
A. Terms of references

B. Source code

Marking scheme

Report: 40%
Abstract & Introduction 5%
Analysis 30%
Synthesis 30%
Evaluation & Conclusions 30%

Presentation 5%

Product: 50%

Fitness for Purpose 40%
Build Quality 60%
Viva 10%

Wei Guang Heng 14000122

50

ﬁt\humbria

UNIVERSITY NEWCASTLE
Department of Computer Science and Digital Technologies

[Complete after approval]

Red

Amber

Green

UNDERGRADUATE COMPUTING PROJECTS: ETHICS REGISTRATION AND

APPROVAL FORM

Section One: Registration [To be completed by student]

Title of research project/dissertation

To1

Researcher’'s name

(ei Guarq Hene
v J

Programme of study

Com puter Sciehce.

Academic Year

20616/2017]

Module code

CMOEH5

Supervisor's name

David Kendall

Second marker’s name

Ju ngong Han

Start Date of Project

i2/a]1€

Brief outline of research topic:

mbed pladdorm .

To s’ﬂwfj ad 1o bu I apn Tol solvhon based on the

Wei Guang Heng 14000122

51

Short description of proposed research methods including identification of participants:

and mitigate any risks to participants, yourself or the environment?

Ethical considerations in the research project YES NO

1. Does your research involve an external organisation or partner?] [Q"P

2. Does your research involve human participants?] -/
3. If yes to Q.2, will you inform the participants about the research?] @//

4. Will you obtain their consent using the standard consent form? LJ B’I

5. Is any deception involved? | IZ'I |t
6. Do any participants constitute a ‘vulnerable group’? L] IE’/
(refer to definition of Vulnerable People)

7. Will the research involve the following information? >
Commercially sensitive O B/
Personally sensitive O IE/;
Politically sensitive [IE/ -
Legally sensitive | 07

8. Is the research likely to have any significant environmental impacts? Ol %
9. Are there likely to be any risks for the participants in your research? L] Y /
10. Are there likely to be any risks for you in conducting the research? | lﬁ"

11. Ifyes [to 5, 6, 7, 8, 9 or 10 above] have you identified steps to address the issues] O N / A/

taken to mitigate such risks or adverse impacts

Statement to explain how any issues identified above will be addressed and what steps will be

Wei Guang Heng 14000122

52

Section Two: Approval

Supervisor/Module Tutor's name

confirming ethical risk status b% P \é e pp A~

Ethical approval [Please tick as appropriate]
Green - Ethical approval is given without conditions (supervisor may
approve)

—

Amber — (to be approved by one independent reviewer) Ethical approval is
given with the following conditions:

Please e-mail the submission to PGR Faculty Support

Information to be provided to all participants O

Participant consent to be obtained using the standard Research

Participant Consent Form or otherwise in accordance with Faculty

procedures O
¢ Data to be stored and destroyed securely in accordance with

University guidelines 0
e Adherence to Data Protection Act CJ
* Anonymity to be offered to participants O
» Commercial confidentiality to be provided to organisations(s) O
o Software vulnerabilities, exploits, hazardous software etc. not to be O

published without prior ‘responsible disclosure’ to the affected

supplier.]
e Other (please state):

Red - Project is referred to FREC for approval.by two independent reviewers]

Name & role of reviewer 1: e reseean T o—
Signature e

Date el i e e e eehe s daie s e s

Name & role of reviewer 2: o irieenierrearaa T,
Signature e rtereenes

Date = eeeeeesiionttRese i s dhneset Eanre

.......

Outcome of Review

Wei Guang Heng 14000122

53

Ethical category of research project

Based on the above Ethical Considerations and with reference to the University’s Ethical Scrutiny
Risk Assessment tool identify the Ethical category of your research project (refer to
http://www.northumbria.ac.uk/static/5007/respdfiriskassesmenttool for further guidance):

[Please tick as appropriate]

Red D vulnerable participants; human tissue; sensitive data; risks to participants & researchers etc.
Amber /’human participants requiring informed consent; commercially sensitive information etc.
Green A no participants involved; secondary data only; no sensitive data

| have read the University and the Faculty Ethics Policy and Procedures and confirm that the
lanswers | have given above are correct. Where issues arise under items 5, 6, 7, 8, 9 or 10
[above] | have described in writing how | intend to approach these issues in the research.

Researcher’s signature %
Date 'LI/IO'//é

ection 1 Ethics Registration to be submitted to Principal Supervisor or Module Tutor and
llocated to a reviewer as follows:

Green risk - may be approved by Supervisor

Amber risk - to be submitted for approval by one independent reviewer (second marker)
Red risk - to be submitted for approval by two independent members of Faculty Research
Fthics Committee

Wei Guang Heng 14000122

54

Appendix 1 - ESP8266 cheatsheet

julod ss822e 03 P3IBUUIOD SBJINSP MOYS// AITMI+LY
(3@s) juiod ssadoe uado ue dnias//o’LL'.ssed, 3ulode,=dVSMI+1V
(83N28X3) }JOMIBU WO 328UU0SIA// dVOMOI+LY
(23In28xa) ssaippe dl MoYsS// 4SH1D+1V
(Aainbui) YJomiau Juaiind ayi MaIA// idVEMO+LY
(3@s) y4omiau ulor// ,piomssed,’,piss, = dVLMO+LY
(83n29X8) SyioMiau d|qe|iene MaIA// dVIMI+LVY
(395) S9POW SS3I2E pUE JUSI|D 03 SPOWI 13S// S=3AOWMI+1LV
(3591) @powi 40j suonido MalA// i=3A0WMI+LY
spuewwod ajdwex3

S0088Z-L woiy
INOWII} 323UUOISIP JUSI|D 318X20S OINE 33S - <BWII>=0L1SdID+1V
(0=XNWdID+1V) Weais ereq 'L
([L'0l=XNNdID+LV) 1eWI0)<Y1bUs|>'<|]dUUEYD UOIID3UUOI>‘AdI+ O
se 11od |elias 03 1USs 8 ||IM pPaAIedal eleq
apow juapedsuel) 39S - <dpowW>=3AONdID+1V
18AISS 39)20S 3y} uado 'L
19SS 19)20S 3Y3 80| ‘0
£¢¢ sl Hod 3 neyaq - (L=XNNdID+1V)[<Hod>]<epow>=4IAYIASdID+LV
uol323UuU0) |suueYD-1I3INAL L
uol3d3uuo) 9|6uIs ‘0
UO1393UU0D 388 - <dpPoW>=XNINdID+LV
»}40M3IBU 0} P31J2SUUO0D USYM SSaIppe d| paubisse Moys - ¥S4I1D+LV
UOI393UU0D 38%20S 850D - 3SOT1IdID+LV
BuLas jo Buluuibaq 03 <pi> ppe [aueyd13jnu 01 185 si XNINID J!
0'SSZ'SST'SST 38 PAXY SISBW ‘['891'Z6L 38 PaXl sl d|
13AJ3S 39)20S 0} 393UU0) - <Hod>‘<ippe><adA1>=1 4VISdID+LV
19AJSS 10 JUSI|D 39Y20S SE SNI.)S JUa1INd MOYS - SNIVLSID+1V
julod sse2oe se sassalppe d| paubisse Moys - 41TMD+LV
MSd ZVdM VdM ¥
MSd ZVdM '€
MSd VdM 'Z
dam’L
funoss oN ‘uado ‘0
julod ssedoe dn 3185 - <U28><|YI><pMd>‘<pISS>=,dVSMO+LV
}I0MIBU WOoJ 3129UU0sIq - dVOMOI+LY
S$}ioMmidu 3|gejlene MaIA - dVIMOI+LV
%10MIBU UIOL - <PM>'<PISS>=,d VEMO+LV
Julod SS90y pue Judl|D ‘¢
julod SS922Y T
LD L
3poN buiesado - ,.IAOWMI+LY
UOISIBA a1eMWllS - HAD+LY
pleoq ay3 319say - 1SY+1V

uonuany - 1v
IsI7 puewiwo) 1v

‘aininy ayj ul 3 nejop

8Y3 sepasn aq pue yse|} 033n[eA 33 S3LM [|IM 430 ‘Yse]} 03 snjea
3yl d}dM 30U ||IM dND '43d ANVIWIWOD pue dNd ANVINWOD
10 JoAe} U] pajeldaldep usag aaey , YIIM SpUBLUWIOD

PUBLUWIOD B 81N29XT - <X>+1V = 93NJ9X3
suondo a|qissod 83 89S - (=<X>+1V = 1S9

1B 195 S| 9N|BA 8Y3 1BYM 835 - i<X>+1V = AInbu|
BN|eA 8Y3 5188 - <>=<X>+1V = 385

sadA} asay3 Jo aiow Jo | 8sn Aew spuewiwiod

U/1/ Y3IM pus p|noYs pue dA1}ISUSS 8Sed a1 SPUBLUIOD
o

esn puewwo) 1v

pleoq ay3i Jo UoIsIan
jJuaiayip uo Aiea Aew abejiw,

XL =nia Klows yseld ,aWL
19MO(d pay

— IWOY 3004 1%9

VY e1ep g)96

LN8 .0ZSLL WVY uonioniisul amMy9

a1ey pneg inejaq ZHWO8
sainjeaq paads/Aiowsy

Ag'g - d1qeuz diyd

1d1d 10 oulinpyVv uo X1 - Xd
1dld 10 ouINpJy UO XY - X1 unjeq

dND -dND ‘VNT ‘Y2HMs 1 pajelbajul

AZ'E - DDA di/dD1 pajeibaju]

uodPauuo) diseg sainjead O/l
IX4d -4

(aLL'zog) 4emod indino wgpoz+

10311 BIM
FAZSTVAZS T
ZHOY'Z

u/6/q LLI'z08
sainjead JIM

YwQg ~ abeiany
‘YWS|Z-09~ Buluuny
Vvne'0 ~ Agpuels
N9'S-0'E-DDA

amod

Xd [£01dD 8d

00Id5 -S| F0OIdD od

m L 8 zouo< zolgD - vasiza
5 G 9 OEEN ~ AND
C
< &€ v =78 A
o0 Is89 19s9y
m L Z adHD %) @lqeua diyd
OXl-¢ X1 ' LOIdD Ld

oulnpiy
OldS |euss

[[e2klS[o)pN PUNOID

. N

©®

SOINOH1D313
‘unpdjJeds

S8LIET-TdM

S|NPOIN 9928dS

55

Wei Guang Heng 14000122

Appendix 2 - Sparkfun weather shield schematics

aJsempuey vado

10T
a7d

(] VXL

671d-S719
€n

ne'e

aNg aNog
b1

AT ZTd

STSYE gy
EIN

[A
NIbY VWV

NIGd-T7rd

STSYE 14

ng
(reuonido) utey

°le}
ALy
N
o
Zd
AN,
VWY
ALy

8€15S9

T/T 994S WY 8E:EZ:TT €TBZ/%/ZT =910
7N
N3 a1p1ag °N :hg ubiseqg
PISIYS 494res] :3TLIL
p'e/es-hg/sesuadty/baosuouwodaanesld/ iduy
25U8DIT @'E SYI[Y-94B8YS UOTINGLAY
SUOWWO) SATIESU]) SUl 4SPUN pasealay
‘ ON9 OND aN9aNg
pel pel
oo
\VARVA dNO-@Tdr
D= Do
[0 (10
BT
Al O AT +Td
<><><><>
AN
= z T £
=
v YY aNIM-Trd
» wlowlo
. D|OD|N
N (9] w
~ g &8
[[
ng ng NG
(Teuonydoy puty
8€15S4 I_
anNg aNg
aNg
= P 073IHS™ €4~ ONINQYY
W \IM = 108 ano
© o vas ano
3 — ea ano
—{ za EENY
N — wa. AEE
B3R 53k —{ oa. S
—|{ sa. NIA
sy
4301
sv
W
eV
v
v
ov
m
outnpJy

UOTS49AUOY

40} pasn aJe g pue } suld [eyibig

aNg

Tr |Iﬁ
aNo

123195 [B1435

1G6E€9-d9

NEE

(reuondo) Sdg
POXQ :SSS4pPPY 91TJM
TOX@ SS3J4PPY PEaY
@9XQ 15584PPY IZI 31G-2
8U9TIZYSTTE TdW

TON9 Teu49Ix3

ON9 ON9 aN9

QZQ]ﬁ.@HA_DﬂH‘jH.SH

2INL - oldaA
LNE aNe HD\ wulﬁwu 29
vas dvo

108 aan ||H
nEE Nne'e
¥N

2JNsSsaid NE'E

18XQ SI peaJ JZI
@8x@ ST 9114n JZI
@bx@ SI SS84ppY 0ZI1 Mq-£

frtptwny

aNg aN9

arZniH H
ano B
YOS ANO 4nt'e
Vv.iva aaa
an @

me
ne'e

SJA0sUSg

yuppg nnding wus4ing xey|
2ansT andu ebeiton xel

aN9 aNg aN9

ON9 ON9

6TZGIIN NE'E
4nQT Ljﬂ.@H M:\QH - N 4NQT

-

y13|* Nq

ano m.wlﬁ
NI

,ﬁ 1no

ne'e
J9mod

zn

56

Wei Guang Heng 14000122

Appendix 3 - mbed client main.cpp

#include "mbed.h"

#include "FX0S8700Q.h"
#include "HTU21D.h"

#include "security.h"

#include "easy-connect.h"
#include “simple-mbed-client.h"

// Client for managing connections to device connector
SimpleMbedClient client;

// Serial interface
Serial pc(USBTX, USBRX);

// Initialising Weather shield
HTU21D weatherSensor (A4, A5);
AnalogIn lightSensor(Al);
DigitalOut blueStatusLED(D7);
DigitalOut greenStatusLED(D8);

// Initialising LEDs
DigitalOut redLED(LED1, 1);
DigitalOut greenLED(LED2, 1);
DigitalOut blueLED(LED3, 1);

// Initialising accelerometer and magnetometer

I2C i2c(PTE25, PTE24);

FX0S8700QAccelerometer acc(i2c, FX0S8700CQ_SLAVE_ADDR1);
FX0S8700QMagnetometer mag(i2c, FX0S8700CQ_SLAVE_ADDR1);

// Forward declaration

void redValueChanged(int newValue);
void greenValueChanged(int newValue);
void blueValueChanged(int newValue);

void updateAccXValue();
void updateAccYValue();
void updateAcczValue();

void updateMagXValue();

void updateMagYValue();

void updateMagzValue();

void updateLightValue();

void updateHumidityValue();
void updateTemperatureValue();
void registered();

// Device connector resources:

SimpleResourceInt redValue = client.define_resource("led/0/red", 1,

&redValueChanged) ;

SimpleResourceInt greenValue = client.define_resource("led/@/green", 1,

&greenValueChanged) ;

SimpleResourceInt blueValue = client.define_resource("led/@0/blue", 1,

&blueValueChanged);

SimpleResourceInt accXValue = client.define_resource('"acc/0/x", 0,

M2MBase: : GET_ALLOWED) ;

SimpleResourceInt accYValue = client.define_resource("acc/0/y", 0,

M2MBase: : GET_ALLOWED) ;

SimpleResourceInt accZValue = client.define_resource("acc/0/z", 0,

M2MBase: : GET_ALLOWED) ;
Wei Guang Heng 14000122

57

SimpleResourceInt magXValue = client.define_resource("mag/0/x", 0,
M2MBase: :GET_ALLOWED) ;
SimpleResourceInt magYValue = client.define_resource("mag/0/y", 0,
M2MBase: :GET_ALLOWED) ;
SimpleResourceInt magZValue = client.define_resource("mag/0/z", 0,
M2MBase: : GET_ALLOWED) ;

SimpleResourceInt lightValue = client.define_resource("weather/0/light", 0,
M2MBase: :GET_ALLOWED) ;

SimpleResourceInt humidityValue = client.define_resource("weather/0/humidity",
0, M2MBase::GET_ALLOWED);

SimpleResourceInt temperatureValue = client.define_resource("weather/0/
temperature", 0, M2MBase::GET_ALLOWED);

// Colour updated from the cloud,
void redValueChanged(int newValue) {
redLED = newValue;

void greenValueChanged(int newValue) {
greenLED = newValue;

void blueValueChanged(int newValue) {
blueLED = newValue;
}

// Upload results to device connector
void updateAccXValue() {

intl6e_t raX;

acc.getX(raX);

accXValue = raX;

¥

void updateAccYValue() {
intl6_t ray;
acc.getY(raY);
accYValue = raY;

¥

void updateAcczValue() {
intl6_t raZ;
acc.getZ(raz);
accZValue = raZ;

¥

void updateMagXValue() {
intle_t rmX;
mag.getX(rmX);
magXValue = rmX;

¥

void updateMagYValue() {
intle_t rmY;
mag.getY(rmY);
magYValue = rmY;

void updateMagzValue() {
intle_t rmZ;
mag.getZ(rmZ);
magZValue = rmZ;

¥

void updatelLightValue() {
Wei Guang Heng 14000122

lightValue = lightSensor.read_ul6();
b

void updateHumidityValue() {
humidityValue = weatherSensor.sample_humid();
b

void updateTemperatureValue() {
temperatureValue = weatherSensor.sample_ctemp();

// Called when we registered with mbed Device Connector
void registered() {
// Turn on blue LED to indicate client is now connected
blueStatusLED = 1;

// Enable the accelerometer
acc.enable();

// Start updating values when connected
client.eventQueue()—->call_every (1000, &updateAccXValue);
client.eventQueue()->call_every(1000, &updateAccYValue);
client.eventQueue()->call_every(1000, &updateAccZValue);
client.eventQueue()—>call_every(1000, &updateMagXValue);
client.eventQueue()—>call_every(1000, &updateMagYValue);
client.eventQueue()—>call_every (1000, &updateMagZValue);
client.eventQueue()—>call_every (1000, &updateLightValue);
()—>call_every (1000, &updateHumidityValue);
()

—>call_every (1000, &updateTemperatureValue);

client.eventQueue
client.eventQueue

int main() {
// Turn on green LED
greenStatusLED = 1;

// Ensure the blue LED is turned off first
blueStatusLED = 0;

// Connecting to wifi network

NetworkInterface xnetwork = easy_connect(true);

if (!network) {
pc.printf("Unable to connect to the internet.\n");
return 1;

}

// Initialising mbed client and connecting to mbed device connector
struct MbedClientOptions options = client.get_default_options();
options.DeviceType = "mbed-program";
if (!client.setup(options, network)) {

pc.printf("Unable to set up mbed client.\n");

return 1;
b

client.on_registered(client.eventQueue()—>event(®istered));

Wei Guang Heng 14000122

59

Appendix 4 - Web server app.js

// Importing modules

var MbedConnectorApi = require('mbed-connector-api');
var express = require('express');

var path = require('path');

var iolLib = require('socket.io');

var http = require('http');

// Access key to mbed Device connector

var accessKey = process.env.ACCESS_KEY ||

"SwgkE7Q8UD9j5W4PP6 1Uw1PbUVe66EUDq2Ur30fDgb600XsHOP3UA01wBnOTv10FXuAvAmAJofZHGgn
47E7Lv1zVWIS5yHjLAI4Su";

// Server port
var port = process.env.PORT || 8080;

// Device endpoint
var frdmK64Endpoint = 'd573a52a-f126-4525-acce-014b56¢c7f05a";

// Resource endpoints

var ledRedResourceURI = '/led/0/red';

var ledGreenResourceURI = '/led/0@/green';
var ledBlueResourceURI = '/led/0/blue’;

var accXResourceURI = '/acc/Q/x';
var accYResourceURI = '/acc/0Q/y';
var accZResourceURI = '/acc/0/z';
var magXResourceURI = '/mag/0/x';
var magYResourceURI = '/mag/0Q/y';
var magZResourceURI = '/mag/0/z';
var temperatureResourceURI = '/weather/0/temperature’;

var humidityResourceURI = '/weather/0/humidity’;
var lightResourceURI = '/weather/0/light';

// Instantiate an mbed Device Connector object
var mbedConnectorApi = new MbedConnectorApi({
accessKey: accessKey

});

// Setting up the app
var app = express();

// Setting up the view directory
app.set('views', path.join(__dirname, ‘'views'));
app.set('view engine', 'hbs');

// Setting up the public directory
app.use(express.static(path.join(__dirname, ‘'public')));

// Set the port
app.set('port', port);

// Render the index page
app.get('/', function(request, response) {
response.render('index"');

})s;

var server = http.Server(app);
var io = iolLib(server);

Wei Guang Heng 14000122 60

// Setup sockets for updating web UI
io.on('connection', function (socket) {
// Toggling the checkbox
socket.on('toggle-switch', function(data) {
console.log('Toogle switch: ', data);

mbedConnectorApi.putResourceValue(frdmK64Endpoint, data.id, data.value,
function(error) {
if (error) console.error(error);
3
});
})s;

// Notification callback

mbedConnectorApi.on('notification', function(notification) {
var path = notification.path;
var payload = notification.payload;

io.emit('notifications', {
id: path,
value: payload

’

)

// Start the app
server. listen(port, function() {
// Set up the notification channel, app will poll for notications from mbed
mbedConnectorApi.startLongPolling(function(error) {
if (error) console.error(error);

// Check if device is connected to cloud connector
mbedConnectorApi.getEndpoints(function(error, devices) {
if (error) throw error;

console.log('Found', devices.length, 'devices', devices);

// Subscribe to notifications
if (devices.length > 0) {
// Subscribe to accelerometer X value
mbedConnectorApi.putResourceSubscription(frdmK64Endpoint,
accXResourceURI, function(error) {
if (error) console.error(error);

1)

// Subscribe to accelerometer Y value
mbedConnectorApi.putResourceSubscription(frdmK64Endpoint,
accYResourceURI, function(error) {
if (error) console.error(error);

1)

// Subscribe to accelerometer Z value
mbedConnectorApi.putResourceSubscription(frdmK64Endpoint,
accZResourceURI, function(error) {
, if (error) console.error(error);
);

// Subscribe to magnetometer X value
mbedConnectorApi.putResourceSubscription(frdmK64Endpoint,
magXResourceURI, function(error) {
if (error) console.error(error);

1)

// Subscribe to magnetometer Y value
mbedConnectorApi.putResourceSubscription(frdmK64Endpoint,
magYResourceURI, function(error) {

Wei Guang Heng 14000122

if (error) console.error(error);

});

// Subscribe to magnetometer Z value
mbedConnectorApi.putResourceSubscription(frdmK64Endpoint,
magZResourceURI, function(error) {
if (error) console.error(error);

P

// Subscribe to light sensor value
mbedConnectorApi.putResourceSubscription(frdmK64Endpoint,
lightResourceURI, function(error) {
if (error) console.error(error);

P

// Subscribe to humidity sensor value
mbedConnectorApi.putResourceSubscription(frdmK64Endpoint,
humidityResourceURI, function(error) {
if (error) console.error(error);

1
// Subscribe to temperature sensor value
mbedConnectorApi.putResourceSubscription(frdmK64Endpoint,
temperatureResourceURI, function(error) {
if (error) console.error(error);
1
¥
}, { parameters: { type: 'mbed-program' } });
console.log('App is now listening on port %s', port);

})
)

Wei Guang Heng 14000122

62

Appendix 5 - Web client index.hbs

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/skeleton.css">
<link rel="stylesheet" href="css/styles.css'">
<title>CMO645 Internet of Things</title>
</head>

<body>
<div class="container">
<h1>CM@645 Internet of Things</hl>

<!— Start of row ——
<div class="row">
<!—— 9 columns to display resource name ——>

<div class="nine columns'>
<h3>LED Red</h3>
</div>
<!—— 3 columns to display toggle button —-—>
<div class="three columns'">
<label class="switch">
<input id= "red-toggle-switch" type="checkbox'">
<div class="slider round"></div>
</label>
</div>
</div>
<!— End of row ——>

<!— Start of row —>
<div class="row">
<!— 9 columns to display resource name ——>
<div class="nine columns">
<h3>LED Green</h3>
</div>
<!—— 3 columns to display toggle button ——>
<div class="three columns'>
<label class="switch">
<input id= "green-toggle-switch" type="checkbox">
<div class="slider round'"></div>
</ label>
</div>
</div>
<!— End of row ——>

<!— Start of row —>
<div class="row">
<!—— 9 columns to display resource name ——>
<div class="nine columns'>
<h3>LED Blue</h3>
</div>
<!— 3 columns to display toggle button —-—>
<div class="three columns'>
<label class="switch">
<input id= "blue-toggle-switch" type="checkbox">
<div class="slider round'"></div>
</label>
</div>
</div>
<!— End of row ——>

Wei Guang Heng 14000122

63

<!—— Start of row —>
<div class="row">
<!—— 9 columns to display resource name ——>
<div class="nine columns'">
<h3>Light sensor</h3>
</div>
<!—— 3 columns to display value ——>
<div class="three columns'>
<h3 id="light-sensor">-</h3>
</div>
</div>
<!— End of row ——>

<!—— Start of row ——>
<div class="row">
<!— 9 columns to display resource name ——>
<div class="nine columns'">
<h3>Humidity sensor</h3>
</div>

<!—— 3 columns to display value —-—>
<div class="three columns'>
<h3 id="humidity-sensor'">-</h3>
</div>
</div>
<!—— End of row ——>

<!—— Start of row ——>
<div class="row">
<!—— 9 columns to display resource name ——>
<div class="nine columns'>
<h3>Temperature sensor</h3>
</div>
<!—— 3 columns to display value ——>
<div class="three columns'>
<h3 id="temperature-sensor'>-</h3>
</div>
</div>
<!—— End of row ——>

<h3>Accelerometer</h3>
<canvas id="accelerometercanvas" width= "1000" height="300"></canvas>

<h3>Magnetometer</h3>
<canvas id="magnetometercanvas" width="1000" height="300"></canvas>
</div>

<script type="text/javascript" src="js/jquery-2.1.4.min.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/
socket.io/1.7.3/socket.io.js"></script>
<script type="text/javascript" src="js/smoothie.js"></script>
<script type="text/javascript">
$(function() {

var socket = io();

// Handling toggle button events
document.getElementById('red-toggle-switch').onclick = function() {
var value = 1;
if (this.checked) {
value = 0;

socket.emit('toggle-switch', {
id: '/led/@/red',
value: value

});
Wei Guang Heng 14000122 64

};

document.getElementById('green-toggle-switch').onclick = function() {
var value = 1;
if (this.checked) {
value = 0;
}
socket.emit('toggle-switch', {
id: '/led/0/green',
value: value
});
};

document.getElementById('blue-toggle-switch').onclick = function() {
var value = 1;
if (this.checked) {
value = 0;
}
socket.emit('toggle-switch', {
id: '/led/0/blue',
value: value
1)
¥

// Initialising acclerometer graph diagram
var accelerometersmoothie = new SmoothieChart();

accelerometersmoothie.streamTo(document.getElementById("accelerometercanvas"));

// Data

var accXLine
var accYLine
var accZLine

new TimeSeries();
new TimeSeries();
new TimeSeries();

// Add to SmoothieChart
accelerometersmoothie.addTimeSeries(accXLine,
0)', fillStyle:'rgba(255, 0, 0, 0.0)', lineWidth:3 });

{ strokeStyle:'rgb(255, 0,
)
accelerometersmoothie.addTimeSeries(accYLine, { strokeStyle:'rgb(@, 255,
)
{

0)', fillStyle:'rgba(@, 255, 0, 0.0)', lineWidth:3 });
accelerometersmoothie.addTimeSeries(accZLine, strokeStyle: 'rgh(0, 0,
255)"', fillStyle:'rgba(@, @, 255, 0.0)', lineWidth:3 });

// Initialising magnetometer graph diagram
var magnetometersmoothie = new SmoothieChart();

magnetometersmoothie.streamTo(document.getElementById('"magnetometercanvas"));

// Data

var magXLine
var magYLine
var magZLine

new TimeSeries();
new TimeSeries();
new TimeSeries();

// Add to SmoothieChart

magnetometersmoothie.addTimeSeries(magXLine, { strokeStyle: 'rgb(255, 0,
0)', fillStyle:'rgba(255, 0, 0, 0.0)', lineWidth:3 });

magnetometersmoothie.addTimeSeries(magYLine, { strokeStyle:'rgb(@, 255,
0)', fillStyle:'rgba(@, 255, 0, 0.0)', lineWidth:3 });

magnetometersmoothie.addTimeSeries(magZLine, { strokeStyle:'rgb(0, 0,
255)"', fillStyle:'rgba(@, @, 255, 0.0)', lineWidth:3 });

// Listen to server response
socket.on('notifications', function (data) {
console.log('Receieved data: ', data);
if (data.id == "/acc/0/x") { // Accelerometer
accXLine.append(new Date().getTime(), data.value);

Wei Guang Heng 14000122 65

s o

}
}
}
1)
});

else if (data.id ==
accYLine.append(new
else if (data.id ==
accZLine.append(new
else if (data.id ==
magXLine.append(new
else if (data.id ==
magYLine.append(new
else if (data.id ==
magZLine.append(new
else if (data.id ==

"/acc/0/y") {
Date().getTime(), data.value);
"/acc/0/z") {
Date().getTime(), data.value);
"/mag/0/x") { // Magnetometer
Date().getTime(), data.value);
"/mag/0/y") {
Date().getTime(), data.value);
"/mag/0/z") {
Date().getTime(), data.value);
"/weather/0/light") { // Weather shield

var value = (data.value/65536) *x 100;

$("#light-sensor").html(value.toFixed(2) + "%"

else if (data.id ==

);
{

'/weather/0/temperature')

$("#temperature-sensor").html(data.value + "°C");

else if (data.id ==

'/weather/0/humidity') {

$("#humidity-sensor").html(data.value + "%");

</script>

</body>
</html>

Wei Guang Heng 14000122

66

7. References

Android Developer. (2016). Peripheral I/O. [online] Available at: https://developer.android.com/
things/sdk/pio/index.html [Accessed 16 Mar. 2017].

ARM mbed. (n.d.) ESP8266. [online] Available at: https://developer.mbed.org/teams/ESP82
[Accessed 3 Apr. 2017].

ARM mbed. (n.d.) ESP8266-Firmware-Update-To-Expressif [online] Available at: https://
developer.mbed.org/teams/ESP8266/code/ESP8266-Firmware-Update-To-Espressif/ [Accessed 3
Apr. 2017].

ARM mbed. (n.d). FRDM-K64F. [online] Available at: https://developer.mbed.org/platforms/frdm-
k64f/ [Accessed 29 Mar. 2017].

ARM mbed. (n.d.). Introduction to the mbed OS API. [online] Available at: https://docs.mbed.com/
docs/mbed-os-api-reference/en/latest/ [Accessed 28 Mar. 2017].

ARM mbed. (n.d.). About the mbed OS event loop. [online] Available at: https://docs.mbed.com/
docs/mbed-os-api-reference/en/latest/APls/tasks/events/ [Accessed 28 Mar. 2017].

ARM mbed. (n.d.). Building an internet connected lighting system. [online] Available at: https://

docs.mbed.com/docs/building-an-internet-connected-lighting-system/en/latest/ [Accessed 28 Mar.
2017].

ARM mbed. (n.d.). mbed-connector-api-node. [online] Available at: https://github.com/ARMm
mbed-connector-api-node [Accessed 28 Mar. 2017].

BBC News. (2016). 'Smart' home devices used as weapons in website attack. [online] Available at:
http://www.bbc.co.uk/news/technology-37738823 [Accessed 16 Mar. 2017].

Canonical. (2017). Taking charge of the l0T’s securities vulnerabilities. [online] Available at: https:/
pages.ubuntu.com/loT-Security-whitepaper.html [Accessed 5 Apr. 2017].

GSMA. (n.d.). Automotive & Intelligent Transport Systems. [online] Available at: http://
www.gsma.com/connectedliving/automotive/ [Accessed 22 Mar. 2017].

Raspberry Pi Foundation. (n.d.). A security update for Raspbian Pixel. [online] Available at: https://
www.raspberrypi.org/blog/a-security-update-for-raspbian-pixel/ [Accessed 22 Mar. 2017].

Resin.io. (n.d.). Features | Resin.io. [online] Available at: https://resin.io/features/ [Accessed 16
Mar. 2017].

Sparkfun. (n.d.). Sparkfun Weather Shield [online] Available at: https://www.sparkfun.com/products/
13956 [Accessed 3 Apr. 2017].

Wei Guang Heng 14000122 67

https://developer.android.com/things/sdk/pio/index.html
https://developer.android.com/things/sdk/pio/index.html
https://developer.mbed.org/teams/ESP8266/
https://developer.mbed.org/teams/ESP8266/code/ESP8266-Firmware-Update-To-Espressif/
https://developer.mbed.org/teams/ESP8266/code/ESP8266-Firmware-Update-To-Espressif/
https://developer.mbed.org/teams/ESP8266/code/ESP8266-Firmware-Update-To-Espressif/
https://developer.mbed.org/platforms/frdm-k64f/
https://developer.mbed.org/platforms/frdm-k64f/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/events/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/events/
https://docs.mbed.com/docs/building-an-internet-connected-lighting-system/en/latest/
https://docs.mbed.com/docs/building-an-internet-connected-lighting-system/en/latest/
https://github.com/ARMmbed/mbed-connector-api-node
https://github.com/ARMmbed/mbed-connector-api-node
http://www.bbc.co.uk/news/technology-37738823
https://pages.ubuntu.com/IoT-Security-whitepaper.html
https://pages.ubuntu.com/IoT-Security-whitepaper.html
http://www.gsma.com/connectedliving/automotive/
http://www.gsma.com/connectedliving/automotive/
https://www.raspberrypi.org/blog/a-security-update-for-raspbian-pixel/
https://www.raspberrypi.org/blog/a-security-update-for-raspbian-pixel/
https://resin.io/features/
https://www.sparkfun.com/products/13956
https://www.sparkfun.com/products/13956

Sparkfun. (n.d.). WiFi Module - ESP8266 [online] Available at: https://www.sparkfun.com/products/
13678 [Accessed 3 Apr. 2017].

The MagPi Magazine. (2017). Sales soar: Raspberry Pi British board beats Commodore 64,

world's third best-selling computer. [online] Available at: https://www.raspberrypi.org/magpi/
raspberry-pi-sales/ [Accessed 16 Mar. 2017].

Amadeo, R. (2016). Google’s new “Android Things” OS hopes to solve awful 0T security. [online]

Ars Technica. Available at: https://arstechnica.com/gadgets/2016/12/google-brillo-rebrands-as-
android-things-googles-internet-of-things-os/ [Accessed 16 Mar. 2017].

Brisbourne, A (n.d.). Tesla’s Over-the-Air Fix: Best Example Yet of the Internet of Things?. [online]
WIRED. Available at: https://www.wired.com/insights/2014/02/teslas-air-fix-best-example-yet-
internet-things/ [Accessed 16 Mar. 2017].

Columbus, L. (2016). Roundup Of Internet Of Things Forecasts And Market Estimates, 2016.

[online] Forbes. Available at: https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-
internet-of-things-forecasts-and-market-estimates-2016/#1808c080292d [Accessed 16 Mar. 2017].

Evan, D. (2011). The Internet of Things. How the Next Evolution of the Internet Is Changing
Everything. [online] Cisco. Available at: http://www.cisco.com/c/dam/en us/about/ac79/docs/innov/

IoT_IBSG_0411FINAL.pdf [Accessed 5 Apr. 2017].

Gratton, A (n.d.). ESP8266 Boot Mode Selection. [online] GitHub. Available at: https://github.com/
espressif/esptool/wiki/ESP8266-Boot-Mode-Selection [Accessed 4 Apr. 2017].

Morgan, J. (2014). A Simple Explanation Of ‘The Internet Of Things’. [online] Forbes. Available at:
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-
anyone-can-understand/#5070f2b31d09 [Accessed 16 Mar. 2017].

Ouimet, M. (2017). Securing the Industrial Internet of Things. [online] CA Technologies. Available

at: https://www.ca.com/us/rewrite/articles/security/securing-the-industrial-internet-of-things.html
[Accessed 16 Mar. 2017].

Piekarski, W (2016). Announcing updates to Google’s Internet of Things platform: Android Things
and Weave. [online] Android Developers Blog. Available at: https://android-

developers.googleblog.com/2016/12/announcing-googles-new-internet-of-things-platform-with-
weave-and-android-things.html [Accessed 5 Apr. 2017].

Risteska Stojkoska, B. and Trivodaliev, K. (2017). A review of Internet of Things for smart home:
Challenges and solutions. Journal of Cleaner Production, 140, pp.1454-1464.

Sarukkai, S (2016). Ransomware and the Internet of Things: A Growing Threat. [online]

eSecurityPlanet. Available at: esecurityplanet.com/network-security/ransomware-and-the-internet-
of-things-a-growing-threat.html [Accessed 5 Apr. 2017].

Wei Guang Heng 14000122 68

https://www.sparkfun.com/products/13678
https://www.sparkfun.com/products/13678
https://www.raspberrypi.org/magpi/raspberry-pi-sales/
https://www.raspberrypi.org/magpi/raspberry-pi-sales/
https://arstechnica.com/gadgets/2016/12/google-brillo-rebrands-as-android-things-googles-internet-of-things-os/
https://arstechnica.com/gadgets/2016/12/google-brillo-rebrands-as-android-things-googles-internet-of-things-os/
https://arstechnica.com/gadgets/2016/12/google-brillo-rebrands-as-android-things-googles-internet-of-things-os/
https://www.wired.com/insights/2014/02/teslas-air-fix-best-example-yet-internet-things/
https://www.wired.com/insights/2014/02/teslas-air-fix-best-example-yet-internet-things/
https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#1808c080292d
https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#1808c080292d
https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#1808c080292d
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://github.com/espressif/esptool/wiki/ESP8266-Boot-Mode-Selection
https://github.com/espressif/esptool/wiki/ESP8266-Boot-Mode-Selection
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#5070f2b31d09
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#5070f2b31d09
https://www.ca.com/us/rewrite/articles/security/securing-the-industrial-internet-of-things.html
https://android-developers.googleblog.com/2016/12/announcing-googles-new-internet-of-things-platform-with-weave-and-android-things.html
https://android-developers.googleblog.com/2016/12/announcing-googles-new-internet-of-things-platform-with-weave-and-android-things.html
https://android-developers.googleblog.com/2016/12/announcing-googles-new-internet-of-things-platform-with-weave-and-android-things.html
http://esecurityplanet.com/network-security/ransomware-and-the-internet-of-things-a-growing-threat.html
http://esecurityplanet.com/network-security/ransomware-and-the-internet-of-things-a-growing-threat.html
http://esecurityplanet.com/network-security/ransomware-and-the-internet-of-things-a-growing-threat.html

Weber, R. (2010). Internet of Things — New security and privacy challenges. Computer Law &
Security Review, 26(1), pp.23-30.

8. Figures

Figure 1. ARM (2017) Overall architecture of the platform [diagram] Available at: https:/
docs.mbed.com/docs/mbed-device-connector-web-interfaces/en/latest/ [Accessed 29 Mar. 2017].

Figure 3. ARM (2017) Threads and their states [diagram] Available at: https://docs.mbed.com/docs/
mbed-os-api-reference/en/latest/APls/tasks/rtos/#thread [Accessed 29 Mar. 2017].

Figure 8. Google (2017) Basic attribute of different serial protocol [diagram] Available at: https://
developer.android.com/things/sdk/pio/index.html [Accessed 29 Mar. 2017].

Figure 9. ARM (2017) Different components on mbed.com and the mbed device [diagram]

Available at: https://www.mbed.com/en/platform/cloud/mbed-device-connector-service/ [Accessed
29 Mar. 2017].

Figure 11. ARM (2017) Freedom-K64F board header pin configurations [image] Available at:
https://developer.mbed.org/platforms/FRDM-K64F/ [Accessed at: 29 Mar. 2017].

Figure 15. ARM (2017) Import from URL option [image] Available at: https://docs.mbed.com/docs/
building-an-internet-connected-lighting-system/en/latest/3_software/ [Accessed at: 11 Apr. 2017].

Figure 20. ARM (2017) Dragg/ng the binary on to the board [image] Available at: https://

[Accessed at: 11 Apr. 2017].

Figure 21. ARM (2017) mbed Device Connector security credentials page with security certificate
generated [image] Available at: https://docs.mbed.com/docs/building-an-internet-connected-

lighting-system/en/latest/4_connectivity/ [Accessed at: 11 Apr. 2017].

Wei Guang Heng 14000122 69

https://docs.mbed.com/docs/mbed-device-connector-web-interfaces/en/latest/
https://docs.mbed.com/docs/mbed-device-connector-web-interfaces/en/latest/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/rtos/#thread
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/rtos/#thread
https://developer.android.com/things/sdk/pio/index.html
https://developer.android.com/things/sdk/pio/index.html
http://mbed.com
https://www.mbed.com/en/platform/cloud/mbed-device-connector-service/
https://developer.mbed.org/platforms/FRDM-K64F/
https://docs.mbed.com/docs/building-an-internet-connected-lighting-system/en/latest/3_software/
https://docs.mbed.com/docs/building-an-internet-connected-lighting-system/en/latest/3_software/
https://docs.mbed.com/docs/building-an-internet-connected-lighting-system/en/latest/3_software/
https://docs.mbed.com/docs/building-an-internet-connected-lighting-system/en/latest/3_software/
https://docs.mbed.com/docs/building-an-internet-connected-lighting-system/en/latest/4_connectivity/
https://docs.mbed.com/docs/building-an-internet-connected-lighting-system/en/latest/4_connectivity/
https://docs.mbed.com/docs/building-an-internet-connected-lighting-system/en/latest/4_connectivity/

